1 resultado para Computer aided design
em Universidade Federal de Uberlândia
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (50)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (39)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (88)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (17)
- CentAUR: Central Archive University of Reading - UK (66)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (16)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (41)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (14)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (40)
- DRUM (Digital Repository at the University of Maryland) (3)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Greenwich Academic Literature Archive - UK (5)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (20)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (13)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (9)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (12)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (81)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (4)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Scielo Saúde Pública - SP (17)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (17)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (35)
- Universidade do Minho (3)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitat de Girona, Spain (12)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Lausanne, Switzerland (38)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- University of Michigan (24)
- University of Queensland eSpace - Australia (29)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Lung cancer is the most common of malignant tumors, with 1.59 million new cases worldwide in 2012. Early detection is the main factor to determine the survival of patients affected by this disease. Furthermore, the correct classification is important to define the most appropriate therapeutic approach as well as suggest the prognosis and the clinical disease evolution. Among the exams used to detect lung cancer, computed tomography have been the most indicated. However, CT images are naturally complex and even experts medical are subject to fault detection or classification. In order to assist the detection of malignant tumors, computer-aided diagnosis systems have been developed to aid reduce the amount of false positives biopsies. In this work it was developed an automatic classification system of pulmonary nodules on CT images by using Artificial Neural Networks. Morphological, texture and intensity attributes were extracted from lung nodules cut tomographic images using elliptical regions of interest that they were subsequently segmented by Otsu method. These features were selected through statistical tests that compare populations (T test of Student and U test of Mann-Whitney); from which it originated a ranking. The features after selected, were inserted in Artificial Neural Networks (backpropagation) to compose two types of classification; one to classify nodules in malignant and benign (network 1); and another to classify two types of malignancies (network 2); featuring a cascade classifier. The best networks were associated and its performance was measured by the area under the ROC curve, where the network 1 and network 2 achieved performance equal to 0.901 and 0.892 respectively.