3 resultados para Ceramica - Retificação e polimento
em Universidade Federal de Uberlândia
Resumo:
In a scenario of increasing competitiveness of the global industrial sector and with a consumer market increasingly demanding, there is an increased demand for new materials and, consequently, possibilities to explore new research and technological advances towards the development of new manufacturing methods or the improvement of existing technologies. In the case of cast irons, new grades of them have been developed so that their mechanical properties have been improved, making them more competitive with steel, expanding the applications and thus represents great economic gain for metallurgy and manufacturing sectors. This increases the interest and creates new opportunities to study these materials and identify how they respond in terms of the surface integrity, tool wear, cutting forces, among others, when machined by grinding operation. In this context, due to the lack of results from grinding of cast irons and studies comparing grindability among several grades of cast irons found in the literature, this work aims to generate scientific and technological contribution to the metallurgical and metal working sector through roughness results (Ra and Rz parameters) and evaluation and analysis of the subsurface integrity of three cast iron grades (gray, compacted graphite and nodular). The machining trials were performed on a surface grinding machine with silicon carbide grinding wheel at different cutting conditions. The input variables were the radial depth of cut (15 and 30 μm), worktable speed, vw (5 and 10 m/min) and the abrasive grain size of the grinding wheel. The results showed that surface roughness increased with the radial depth of cut for all materials tested; and the lowest values were obtained for gray cast iron. Also, roughness was sensitive to variation of worktable speed and the lowest values were obtained after machining with vw = 5 m/min. With respect to the abrasive grain size, as it decreased the roughness values increased to gray and nodular cast iron grades. Furthermore, grinding burns marks were observed on the surfaces of nodular cast iron and compacted graphite iron grades after grinding the smallest grain size, contrary to what is usually reported in literature. However, no evidence of severe thermal damages below the machined surfaces of all cast iron grades was observed after analyzing the results of hardness and the SEM micrograph images.
Resumo:
The present work analyzed the tribological behavior of coatings/surface modifications traditionally used in cold rolling mill rolls and new coatings/surface modificationswith potential to replace the carcinogenic hard chrome. The study started with identification of wear mechanisms occurring in real coldrollingmill rolls. Due the high cost and dimensions of the rolls, thereplication technique was used. Replicas were obtained from 4 different rolling millBrazilian companies before and after a normal rolling campaign. Initial sliding tests were conducted using spherical and cylindrical counter bodies in order to verifywhichtribological conditions allowed to reproduce the wear mechanisms found in the replicas. These tests indicated the use of reciprocating sliding tests with cylindrical counter bodies (line contact), normal load of 100 N, and test times of and 1 h and 5 h. Different surface modifications were carried out on samples produced from a fragment of a rolling mill roll. The specimens were heat treated and ground on both sides. After, some specimens were surface textured by electrical discharge texturing (EDT). For both groups (ground and EDT), subsequent treatments of chromium plating, electroless NiP coating and plasma nitriding were carried out. The results of the reciprocating tests showed that specimens with electroless NiP coating presented the lowest friction coefficients, while plasma nitrided specimens showed the highest. In general, previous surface texturing before the coating/surface modification increased the wear of the counter bodies. Oneexceptionwas for EDT with subsequent electroless NiP coating, which presented the lowest counter bodies wear rate. The samples withelectroless NiP coating promoted a tribolayer consisting of Nickel, Phosphorus and Oxygen on both the specimens andthecounter bodies, which was apparently responsible for the reduction of friction coefficient and wear rate. The increase of the test time reduced the wear rate of the samples, apparently due the stability of the tribolayers formed, except for the nitrided samples. For the textured specimens, NiP coating showed the best performance in maintaining the surface topography of the specimens after the sliding tests.
Resumo:
The coexistence of gingival recession (GR) with root coverage indication and non-carious cervical lesions (LCNC) generates the need for a protocol that respects and promotes health of dental and periodontal tissues and allows treatment predictability. The main objectives of this theses were: (1) verify, through clinical evaluations, the connective tissue graft for root coverage on direct and indirect restorations made of ceramic resin; (2) analyze the influence of the battery level of the LED curing unit in the composite resin characteristics; (3) assess the influence of restorative materials, composite resin and ceramics, on the viability of gingival fibroblasts from primary culture. Nine patients with good oral hygiene and occlusal stability diagnosed with LCNCs the anterior teeth including premolars associated with gingival recession (class I and II of Miller) and only gingival recession were selected. After initial clinical examination, occlusal adjustment was performed and the patients had their teeth randomized allocated on direct composite resin restoration of LCNC, polishing and GR treatment with connective tissue graft and advanced coronally flap CR group (n = 15); and indirect ceramic restoration of the LCNC's and GR treatment (CTG+CAF) Group C (n = 15). The GR presented teeth with no clinically formed LCNCs cavity were treated using (CTG+CAF) being the control group (n = 15). Sorption and solubility tests, analysis of the degree of conversion and diametral tensile strength were performed in composite resin samples (n = 10) photoactivated by 100, 50 and 10% battery charge LED unit. The viability of fibroblasts on composite resin, ceramics and dentin disks (n = 3) was examined. Clinical follow-up was performed for three months. The data obtained at different stages were tabulated and subjected to analysis for detection of normal distribution and homogeneity. The results showed that: the LED unit with 10% battery affects the characteristics of the composite resin; restorative materials present biocompatibility with gingival fibroblasts; and the association of surgical and restorative treatment of teeth affected by NCCL and GR presents successful results at 3-month follow-up.