4 resultados para CNPQ::ENGENHARIAS::ENGENHARIA CIVIL::GEOTECNICA::MECANICAS DOS SOLOS

em Universidade Federal de Uberlândia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport of people and goods contributes to the deterioration of the environment in urban areas because of the generation of pollution, such as, air, noise, soil, water or visual degradation. The heavy vehicles that use diesel as fuel are mainly responsible for the emission of nitrogen oxides (NOx) and particulate matter (PM), contributing to participation of the transport sector in air pollution. In addition, there is emission of Greenhouse Gas (GHG) whose main component is carbon dioxide (CO2). In most major cities, public transportation is often considered as a less polluting alternative compared to the private vehicle, in view of the potential to reduce, per passenger, the emissions of GHG and air pollutants. The study area was the city of Uberlândia and the objects of study were the trunk lines of the Sistema Integrado de Transporte (SIT). The emissions of NOx, PM and CO2 were estimated through the bottom-up approach which used the route of each bus line and also fuel consumption obtained through simulation from the TSIS software. The software has some result limitations, there are no report about the emission of pollutants by bus, and it is not able to change specifications for the fuel used by the fleet. The results obtained through calculations of pollutants and GHG emission by the bottom-up approach show that the emission is higher when using fuel comsuption obtained in simulation than using distance. For the results considering fuel and distance there was a reduction in emissions comparing ethanol and diesel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mathematical modeling in the simulation of self-purification capacity in lotic environment is an important tool in the planning and management of hydric resources in hydrographic basin scale. It satisfactorily deals with the self-purification process when the coefficients of physical and biochemical processes are calibrated from monitorated water quality data, which was the main focus of this study. The present study was conducted to simulate the behavior of the parameters OD, BOD5, total phosphorus, E. coli, ammonia, nitrite, nitrate and the total metals cadmium, chromium, copper, lead and zinc in the Uberabinha’s lower course (with an approximate annual growth flow between 4-35 m3/s), in a stretch of 19 km downstream of the treated effluent release by the WWTP of the city. The modelings, on the present study, show the importance of constant water quality parameters monitoration over the water course, based on the comparison of the simulations from calibrated coefficients and coefficients obtained in the literature for the period of June until November 2015. After coefficients calibration, there were good adjustments between simulated and measured data for the parameters OD, BOD, Ptotal, ammonia and nitrate and unsatisfactory adjust for the parameters nitrite and E. coli. About the total metals, the adjustments were not satisfactory on the reservoir’s vicinity of the Small Hydropower Plant Martins, due the considerable increase of the bottom sediment in lentic region. The greatest scientific contribution of this study was to calibrate the decay coefficient K and the quantification of the release by the fund S of total metals in watercourse midsize WWTP pollutant load receptor, justified by the lack of studies in the literature about the subject. For the metals cadmium, chromium, copper, lead and zinc, the borderline for K and S calibrated were: 0.0 to 13.0 day-1 and 0.0 to 1.7 g/m3.day; 0.0 to 0.9 day-1 and 0.0 to 7.3 g/m3.day; 0.0 to 25.0 day-1 and 0.0 to 1.8 g/m3.day; 0.0 to 7.0 day-1 and 0.0 to 40.3 g/m3.day; 0.0 to 30.0 day-1 and 0.0 to 70.1 g/m3.day.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the sustainability under the environmental (ecological) perspective of Water Supply and Sanitary Sewers Systems from Uberaba city, MG. It was accomplished in this analysis, An Environmental Sustainability Assessment of those systems, by the means of specific sustainability indicators proposed for Uberaba, but which may be used for other simi-lar cities. To the characterization of the systems, visitations were made to the main units as well as a documental was elaborated. The definition of the level or stage of the sustainability by the indicators was made based on a literature review, on interviews with the technicians and managers of the systems and based on the characterization and observation of the system reality, being attributed to them the following classification: Non Sustainable, Low Sustaina-bility, Medium Sustainability and High Sustainability. It was verified that the indicators that have lower compatibility to the process of sustainability to the studied systems are those rela-ted to the water physical losses, to the water per capita consumption, to the electricity con-sumption and to the sludge from the water treatment plants disposal untreated into a water body, for the Water Supply System. And those ones related to the attendance with sewage treatment, to the electricity consumption and to the usage of the treated sewage, for the Sani-tary Sewers, all of them classified as Non Sustainable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work's objective is the development of a methodology to represent an unknown soil through a stratified horizontal multilayer soil model, from which the engineer may carry out eletrical grounding projects with high precision. The methodology uses the experimental electrical apparent resistivity curve, obtained through measurements on the ground, using a 4-wire earth ground resistance tester kit, along with calculations involving the measured resistance. This curve is then compared with the theoretical electrical apparent resistivity curve, obtained through calculations over a horizontally strati ed soil, whose parameters are conjectured. This soil model parameters, such as the number of layers, in addition to the resistivity and the thickness of each layer, are optimized by Differential Evolution method, with enhanced performance through parallel computing, in order to both apparent resistivity curves get close enough, and it is possible to represent the unknown soil through the multilayer horizontal soil model fitted with optimized parameters. In order to assist the Differential Evolution method, in case of a stagnation during an arbitrary amount of generations, an optimization process unstuck methodology is proposed, to expand the search space and test new combinations, allowing the algorithm to nd a better solution and/or leave the local minima. It is further proposed an error improvement methodology, in order to smooth the error peaks between the apparent resistivity curves, by giving opportunities for other more uniform solutions to excel, in order to improve the whole algorithm precision, minimizing the maximum error. Methodologies to verify the polynomial approximation of the soil characteristic function and the theoretical apparent resistivity calculations are also proposed by including middle points among the approximated ones in the verification. Finally, a statistical evaluation prodecure is presented, in order to enable the classication of soil samples. The soil stratification methodology is used in a control group, formed by horizontally stratified soils. By using statistical inference, one may calculate the amount of soils that, within an error margin, does not follow the horizontal multilayer model.