1 resultado para Anthropology of images
em Universidade Federal de Uberlândia
Filtro por publicador
- Repository Napier (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (12)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (12)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (21)
- Biblioteca de Teses e Dissertações da USP (4)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (15)
- Biodiversity Heritage Library, United States (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (42)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (21)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (41)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (5)
- Digital Howard @ Howard University | Howard University Research (67)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (19)
- Duke University (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (1)
- Harvard University (2)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (7)
- Memoria Académica - FaHCE, UNLP - Argentina (31)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (20)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (5)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (175)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (13)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (6)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- South Carolina State Documents Depository (4)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (29)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (6)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (14)
- Universidade Federal do Rio Grande do Norte (UFRN) (44)
- Universidade Metodista de São Paulo (18)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (34)
- Université de Montréal (2)
- Université de Montréal, Canada (50)
- University of Michigan (8)
- University of Queensland eSpace - Australia (15)
- University of Southampton, United Kingdom (4)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
lmage super-resolution is defined as a class of techniques that enhance the spatial resolution of images. Super-resolution methods can be subdivided in single and multi image methods. This thesis focuses on developing algorithms based on mathematical theories for single image super resolution problems. lndeed, in arder to estimate an output image, we adopta mixed approach: i.e., we use both a dictionary of patches with sparsity constraints (typical of learning-based methods) and regularization terms (typical of reconstruction-based methods). Although the existing methods already per- form well, they do not take into account the geometry of the data to: regularize the solution, cluster data samples (samples are often clustered using algorithms with the Euclidean distance as a dissimilarity metric), learn dictionaries (they are often learned using PCA or K-SVD). Thus, state-of-the-art methods still suffer from shortcomings. In this work, we proposed three new methods to overcome these deficiencies. First, we developed SE-ASDS (a structure tensor based regularization term) in arder to improve the sharpness of edges. SE-ASDS achieves much better results than many state-of-the- art algorithms. Then, we proposed AGNN and GOC algorithms for determining a local subset of training samples from which a good local model can be computed for recon- structing a given input test sample, where we take into account the underlying geometry of the data. AGNN and GOC methods outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings. Next, we proposed aSOB strategy which takes into account the geometry of the data and the dictionary size. The aSOB strategy outperforms both PCA and PGA methods. Finally, we combine all our methods in a unique algorithm, named G2SR. Our proposed G2SR algorithm shows better visual and quantitative results when compared to the results of state-of-the-art methods.