3 resultados para Adaptação e Aferição de Escalas

em Universidade Federal de Uberlândia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of using software based on numerical approximations for metal forming is given by the need to ensure process efficiency in order to get high quality products at lowest cost and shortest time. This study uses the theory of similitude in order to develop a technique capable of simulating the stamping process of a metal sheet, obtaining results close to the real values, with shorter processing times. The results are obtained through simulations performed in the finite element software STAMPACK®. This software uses the explicit integration method in time, which is usually applied to solve nonlinear problems involving contact, such as the metal forming processes. The technique was developed from a stamping model of a square box, simulated with four different scale factors, two higher and two smaller than the real scale. The technique was validated with a bending model of a welded plate, which had a high simulation time. The application of the technique allowed over 50% of decrease in the time of simulation. The results for the application of the scale technique for forming plates were satisfactory, showing good quantitative results related to the decrease of the total time of simulation. Finally, it is noted that the decrease in simulation time is only possible with the use of two related scales, the geometric and kinematic scale. The kinematic scale factors should be used with caution, because the high speeds can cause dynamic problems and could influence the results of the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past few decades have brought many changes to the dental practice and the technology has become ready available. The result of a satisfactory rehabilitation treatment basically depends on the balance between biological and mechanical factors. The marginal adaptation of crowns and prosthetic structures is vital factor for long-term success. The development of CAD / CAM technology in the manufacture of dental prostheses revolutionized dentistry, this technology is capable of generating a virtual model from the direct digital scanning from the mouth, casts or impressions. It allows the planning and design of the structure in a computered software. The virtual projects are obtained with high precision and a significant reduction in clinical and laboratory time. Thus, the present study (Chapters 1, 2 and 3) computed microtomography was used to evaluate, different materials, different CAD/CAM systems, different ways of obtaining virtual model (with direct or indirect scanning), and in addition, also aims to evaluate the influence of cementing agent in the final adaptation of crowns and copings obtained by CAD / CAM. Furthermore, this study (Chapter 4, 5 and 6) also aims to evaluate significant differences in vertical and horizontal misfits in abutment-free frameworks on external hexagon implants (HE) using full castable UCLAs, castable UCLAs with cobalt-chromium pre-machined bases and obtained by CAD / CAM with CoCr or Zirconia by different scanning and milling systems. For this, the scanning electron microscopy and interferometry were used. It was concluded that the CAD / CAM technology is capable to produce restorations, copings and screw-retained implant-supported frameworks in different materials and systems offering satisfactory results of marginal accuracy, with significative reduction in clinical and laboratory time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2004, the National Institutes of Health made available the Patient-Reported Outcomes Measurement Information System – PROMIS®, which is constituted of innovative item banks for health assessment. It is based on classical, reliable Patient-Reported Outcomes (PROs) and includes advanced statistical methods, such as Item Response Theory and Computerized Adaptive Test. One of PROMIS® Domain Frameworks is the Physical Function, whose item bank need to be translated and culturally adapted so it can be used in Portuguese speaking countries. This work aimed to translate and culturally adapt the PROMIS® Physical Function item bank into Portuguese. FACIT (Functional Assessment of Chronic Illness Therapy) translation methodology, which is constituted of eight stages for translation and cultural adaptation, was used. Fifty subjects above the age of 18 years participated in the pre-test (seventh stage). The questionnaire was answered by the participants (self-reported questionnaires) by using think aloud protocol, and cognitive and retrospective interviews. In FACIT methodology, adaptations can be done since the beginning of the translation and cultural adaption process, ensuring semantic, conceptual, cultural, and operational equivalences of the Physical Function Domain. During the pre-test, 24% of the subjects had difficulties understanding the items, 22% of the subjects suggested changes to improve understanding. The terms and concepts of the items were totally understood (100%) in 87% of the items. Only four items had less than 80% of understanding; for this reason, it was necessary to chance them so they could have correspondence with the original item and be understood by the subjects, after retesting. The process of translation and cultural adaptation of the PROMIS® Physical Function item bank into Portuguese was successful. This version of the assessment tool must have its psychometric properties validated before being made available for clinical use.