1 resultado para 901
em Universidade Federal de Uberlândia
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (4)
- Aston University Research Archive (5)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Bibloteca do Senado Federal do Brasil (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cámara de Comercio de Bogotá, Colombia (6)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (42)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (6)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (18)
- Infoteca EMBRAPA (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Línguas & Letras - Unoeste (1)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (15)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (362)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (24)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (57)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (14)
- Universidad Politécnica de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (23)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (1)
Resumo:
Lung cancer is the most common of malignant tumors, with 1.59 million new cases worldwide in 2012. Early detection is the main factor to determine the survival of patients affected by this disease. Furthermore, the correct classification is important to define the most appropriate therapeutic approach as well as suggest the prognosis and the clinical disease evolution. Among the exams used to detect lung cancer, computed tomography have been the most indicated. However, CT images are naturally complex and even experts medical are subject to fault detection or classification. In order to assist the detection of malignant tumors, computer-aided diagnosis systems have been developed to aid reduce the amount of false positives biopsies. In this work it was developed an automatic classification system of pulmonary nodules on CT images by using Artificial Neural Networks. Morphological, texture and intensity attributes were extracted from lung nodules cut tomographic images using elliptical regions of interest that they were subsequently segmented by Otsu method. These features were selected through statistical tests that compare populations (T test of Student and U test of Mann-Whitney); from which it originated a ranking. The features after selected, were inserted in Artificial Neural Networks (backpropagation) to compose two types of classification; one to classify nodules in malignant and benign (network 1); and another to classify two types of malignancies (network 2); featuring a cascade classifier. The best networks were associated and its performance was measured by the area under the ROC curve, where the network 1 and network 2 achieved performance equal to 0.901 and 0.892 respectively.