2 resultados para Óxidos mistos

em Universidade Federal de Uberlândia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transport of people and goods contributes to the deterioration of the environment in urban areas because of the generation of pollution, such as, air, noise, soil, water or visual degradation. The heavy vehicles that use diesel as fuel are mainly responsible for the emission of nitrogen oxides (NOx) and particulate matter (PM), contributing to participation of the transport sector in air pollution. In addition, there is emission of Greenhouse Gas (GHG) whose main component is carbon dioxide (CO2). In most major cities, public transportation is often considered as a less polluting alternative compared to the private vehicle, in view of the potential to reduce, per passenger, the emissions of GHG and air pollutants. The study area was the city of Uberlândia and the objects of study were the trunk lines of the Sistema Integrado de Transporte (SIT). The emissions of NOx, PM and CO2 were estimated through the bottom-up approach which used the route of each bus line and also fuel consumption obtained through simulation from the TSIS software. The software has some result limitations, there are no report about the emission of pollutants by bus, and it is not able to change specifications for the fuel used by the fleet. The results obtained through calculations of pollutants and GHG emission by the bottom-up approach show that the emission is higher when using fuel comsuption obtained in simulation than using distance. For the results considering fuel and distance there was a reduction in emissions comparing ethanol and diesel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.