2 resultados para wastewater irrigation

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A víz- és szennyvíz-szolgáltató vállalatok működési költségeinek jelentős hányadát teszi ki a villamosenergia-költség. Elemzésünk az IBNET (International Benchmarking Network for Water and Sanitation Utilities) adatbázisa alapján vizsgálja a közép-kelet-európai és a FÁK országokban működő víziközművek energiahatékonyságát. Többváltozós statisztikai elemzés segítségével tárjuk fel a különböző működési jellemzők energiahatékonyságot befolyásoló hatását. A Világbank által kezdeményezett IBNET programról bővebb információ a www.ib-net.org oldalon található, angol nyelven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper cost sharing problems are considered. We focus on problems given by rooted trees, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, called irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games Littlechild and Thompson (1977) is a subclass of irrigation games. The Shapley value Shapley (1953) is probably the most popular solution concept for transferable utility cooperative games. Dubey (1982) and Moulin and Shenker (1992) show respectively, that Shapley's Shapley (1953) and Young (1985)'s axiomatizations of the Shapley value are valid on the class of airport games. In this paper we show that Dubey (1982)'s and Moulin and Shenker (1992)'s results can be proved by applying Shapley (1953)'s and Young (1985)'s proofs, that is those results are direct consequences of Shapley (1953)'s and Young (1985)'s results. Furthermore, we extend Dubey (1982)'s and Moulin and Shenker (1992)'s results to the class of irrigation games, that is we provide two characterizations of the Shapley value for cost sharing problems given by rooted trees. We also note that for irrigation games the Shapley value is always stable, that is it is always in the core Gillies (1959).