7 resultados para portfolios

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kockázat jó mérése és elosztása elengedhetetlen a bankok, biztosítók, befektetési alapok és egyéb pénzügyi vállalkozások belső tőkeallokációjához vagy teljesítményértékeléséhez. A cikkben bemutatjuk, hogy a koherens kockázati mértékek axiómáit nem likvid portfóliók esetén is el lehet várni. Így mérve a kockázatot, ismertetünk a kockázatelosztásra vonatkozó két kooperatív játékelméleti cikket. Az első optimista, eszerint mindig létezik stabil, az alegységek minden koalíciója által elfogadható, általános módszer a kockázat (tőke) elosztására. A második cikk pesszimista, mert azt mondja ki, hogy ha a stabilitás mellett igazságosak is szeretnénk lenni, akkor egy lehetetlenségi tételbe ütközünk. / === / Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to fi nancial risk. We argue that the axioms of coherent measures of risk are valid for illiquid portfolios as well. Then, we present the results of two papers on allocating risk measured by a coherent measure of risk. Assume a bank has some divisions. According to the fi rst paper there is always a stable allocation of risk capital, which is not blocked by any coalition of the divisions, that is there is a core compatible allocation rule (we present some examples for risk allocation rules). The second paper considers two more natural requirements, Equal Treatment Property and Strong Monotonicity. Equal Treatment Property makes sure that similar divisions are treated symmetrically, that is if two divisions make the same marginal risk contribution to all the coalition of divisions not containing them, then the rule should allocate them the very same risk capital. Strong Monotonicity requires that if the risk environment changes in such a way that the marginal contribution of a division is not decreasing, then its allocated risk capital should not decrease either. However, if risk is evaluated by any coherent measure of risk, then there is no risk allocation rule satisfying Core Compatibility, Equal Treatment Property and Strong Monotonicity, we encounter an impossibility result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biztosítók működését általában több homogén részállományból összetevődő heterogén biztosítási állomány jellemzi. A részállományok alkotta biztosítási portfólió esetében a kockázatdiverzifikáció vizsgálható a teljes állományra, illetve a részállományokra összesített kockázatok különbségeként, és elemezhető a kockázat és hozam kapcsolata alapján is. A biztosítók működésének főbb sajátosságait tartalmazó modellben azt mutatjuk meg, hogy a biztosítási portfólió esetében tapasztalható kockázatdiverzifikációs hatások milyen mértékben hasonlítanak a klasszikusnak számító, befektetésekkel foglalkozó Markowitz-féle portfólióelmélet által leírtakra. Modellünk alapján megállapítható: számos hasonlóságon túl a biztosító működési sajátosságai következtében a hatékony biztosítási portfóliók, illetve az optimális befektetési arányok meghatározása egyedi tulajdonságokkal jellemezhető. / === / Insurance is generally characterized by a heterogeneous insurance population made up of several (homogeneous) sub-populations. Risk diversification in the "insurance portfolio" containing these sub-populations can appear as a difference between the risk of the total population and the sum of the risks of the separate sub-populations, and it can also be analysed based on the relation of risk and return. Examining these aspects of risk diversification with a model covering the main features of insurance activity, the study analyses how far the risk diversification effects of the insurance portfolio resemble the results of classical Markowitz portfolio theory. Based on the results from the study's theoretical model, it appears that alongside several similarities, there are some individual features in the determination of "efficient insurance portfolios" and optimal investment weights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pénzügyekben mind elméletileg, mind az alkalmazások szempontjából fontos kérdés a tőkeallokáció. Hogyan osszuk szét egy adott portfólió kockázatát annak alportfóliói között? Miként tartalékoljunk tőkét a fennálló kockázatok fedezetére, és a tartalékokat hogyan rendeljük az üzleti egységekhez? A tőkeallokáció vizsgálatára axiomatikus megközelítést alkalmazunk, tehát alapvető tulajdonságok megkövetelésével dolgozunk. Cikkünk kiindulópontja Csóka-Pintér [2010] azon eredménye, hogy a koherens kockázati mértékek axiómái, valamint a tőkeallokációra vonatkozó méltányossági, ösztönzési és stabilitási követelmények nincsenek összhangban egymással. Ebben a cikkben analitikus és szimulációs eszközökkel vizsgáljuk ezeket a követelményeket. A gyakorlati alkalmazások során használt, illetve az elméleti szempontból érdekes tőkeallokációs módszereket is elemezzük. A cikk fő következtetése, hogy a Csóka-Pintér [2010] által felvetett probléma gyakorlati szempontból is releváns, tehát az nemcsak az elméleti vizsgálatok során merül fel, hanem igen sokszor előforduló és gyakorlati probléma. A cikk további eredménye, hogy a vizsgált tőkeallokációs módszerek jellemzésével segítséget nyújt az alkalmazóknak a különböző módszerek közötti választáshoz. / === / Risk capital allocation in finance is important theoretically and also in practical applications. How can the risk of a portfolio be shared among its sub-portfolios? How should the capital reserves be set to cover risks, and how should the reserves be assigned to the business units? The study uses an axiomatic approach to analyse risk capital allocation, by working with requiring basic properties. The starting point is a 2010 study by Csoka and Pinter (2010), who showed that the axioms of coherent measures of risk are not compatible with some fairness, incentive compatibility and stability requirements of risk allocation. This paper discusses these requirements using analytical and simulation tools. It analyses methods used in practical applications that have theoretically interesting properties. The main conclusion is that the problems identified in Csoka and Pinter (2010) remain relevant in practical applications, so that it is not just a theoretical issue, it is a common practical problem. A further contribution is made because analysis of risk allocation methods helps practitioners choose among the different methods available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to financial risk. We show that by using a coherent measure of risk it is impossible to allocate risk satisfying the natural requirements of (Solution) Core Compatibility, Equal Treatment Property and Strong Monotonicity. To obtain the result we characterize the Shapley value on the class of totally balanced games and also on the class of exact games.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bármennyire szeretne is egy bank (vállalat, biztosító) csak az üzletre koncentrálni, nem térhet ki a pénzügyi (hitel-, piaci, operációs, egyéb) kockázatok elől, amelyeket mérnie és fedeznie kell. A teljes fedezés vagy nagyon költséges, vagy nem is lehetséges, így a csőd elkerülésre minden gazdálkodó egységnek tartania kell valamennyi kockázatmentes, likvid tőkét. Koherens kockázatmérésre van szükség: az allokált tőkének tükröznie kell a kockázatokat - azonban még akkor is felmerül elosztási probléma, ha jól tudjuk mérni azokat. A diverzifikációs hatásoknak köszönhetően egy portfólió teljes kockázata általában kisebb, mint a portfóliót alkotó alportfóliók kockázatának összege. A koherens tőkeallokáció során azzal a kérdéssel kell foglalkoznunk, hogy mennyi tőkét osszunk az alportfóliókra, vagyis hogyan osszuk el „kor­rekt” módon a diverzifikáció előnyeit. Így megkapjuk az eszközök kockázathoz való hozzájárulását. A tanulmányban játékelmélet alkalmazásával, összetett opciós példákon keresztül bemutatjuk a kockázatok következetes mérését és felosztását, felhívjuk a figyelmet a következetlenségek veszélyeire, valamint megvizsgáljuk, hogy a gyakorlatban alkalmazott kockázatmérési módszerek [különösen a kockáztatott érték (VaR)] mennyire felelnek meg az elmélet által szabott követelményeknek. ____________________ However much a bank (or company or insurance provider) concentrates only on business, it cannot avoid financial (credit, market, operational or other) risks that need to be measured and covered. Total cover is either very expensive or not even possible, so that every business unit has to hold some risk-free liquid capital to avoid insolvency. What it needs is coherent risk measurement: the capital allocated has to match the risks, but even if the risks are measured well, distribution problems can still arise. Thanks to diversification effects, the total risk of a portfolio is less than the sum of the risks of its sub-portfolios. Coherent capital allocation entails addressing the question of how much capital to divide among the sub-portfolios, or how to distribute ‘correctly’ the advantages of diversification. This yields the contribution of the assets to the risk. The study employs game theory and examples of compound options to demonstrate coherent measurement and distribution of risks. Attention is drawn to the dangers of inconsistencies. The authors examine how far the methods of risk measurement applied in practice (notably VaR—value at risk) meet the requirements set in theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dolgozatban a legegyszerűbb kérdést feszegetjük: Hogyan kell az árakat meghatározni véletlen jövőbeli kifizetések esetén. A tárgyalás némiképpen absztrakt, de a funkcionálanalízis néhány közismert tételén kívül semmilyen más mélyebb matematikai területre nem kell hivatkozni. A dolgozat kérdése, hogy miként indokolható a várható jelenérték szabálya, vagyis hogy minden jövőbeli kifizetés jelen időpontban érvényes ára a jövőbeli kifizetés diszkontált várható értéke. A dologban az egyetlen csavar az, hogy a várható értékhez tartozó valószínűségi mértékről nem tudunk semmit. Csak annyit tudunk, hogy létezik a matematikai pénzügyek legtöbbet hivatkozott fogalma, a misztikus Q mérték. A dolgozat megírásának legfontosabb indoka az volt, hogy megpróbáltam kiiktatni a megengedett portfólió fogalmát a származtatott termékek árazásának elméletéből. Miként közismert, a származtatott termékek árazásának elmélete a fedezés fogalmára épül. (...) ____ In the article the author discusses some problems of the existence of the martingale measure. In continuous time models one should restrict the set of self financing portfolios and introduce the concept of the admissible portfolios. But to define the admissible portfolios one should either define them under the martingale measure or to turn the set of admissible portfolios to a cone which makes the interpretation of the pricing formula difficult.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to financial risk. We show that by using coherent measures of risk it is impossible to allocate risk satisfying simultaneously the natural requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity. To obtain the result we characterize the Shapley value on the class of totally balanced games and also on the class of exact games.