3 resultados para pines
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The impact of climate change on the potential distribution of four Mediterranean pine species – Pinus brutia Ten., Pinus halepensis Mill., Pinus pinaster Aiton, and Pinus pinea L. – was studied by the Climate Envelope Model (CEM) to examine whether these species are suitable for the use as ornamental plants without frost protection in the Carpathian Basin. The model was supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The climate data were available in a 25 km resolution grid for the reference period (1961–1990) and two future periods (2011–2040, 2041–2070). The regional climate model was based on the IPCC SRES A1B scenario. While the potential distribution of P. brutia was not predicted to expand remarkably, an explicit shift of the distribution of the other three species was shown. Northwestern African distribution segments seem to become abandoned in the future. Current distribution of P. brutia may be highly endangered by the climate change. P. halepensis in the southern part and P. pinaster in the western part of the Carpathian Basin may find suitable climatic conditions in the period of 2041–2070.
Resumo:
The potential future distribution of four Mediterranean pines was aimed to be modeled supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The studied species were Pinus brutia, Pinus halepensis, Pinus pinaster, and Pinus pinea. The climate data were available in a 25 km resolution grid for the reference period (1961-90) and two future periods (2011-40, 2041-70). The climate model was based on the IPCC SRES A1B scenario. The model results show explicit shift of the distributions to the north in case of three of the four studied species. The future (2041-70) climate of Western Hungary seems to be suitable for Pinus pinaster.
Resumo:
Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.