3 resultados para nonlinear optics in fibers
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Ebben a tanulmányban a klasszikus Harrod növekedési modellt nemlineáris kiterjesztéssel, keynesi és schumpeteri tradíciók bevezetésével reprezentatív ügynök modellbe alakítjuk. A híres Lucas kritika igazolásaként megmutatjuk, hogy az intrinsic gazdasági növekedési ütemek trajektóriái vagy egy turbulens káoszba szóródnak szét, vagy egy nagyméretű rendhez vezetnek, ami elsődlegesen a megfelelő fogyasztási függvény típusától függ, s bizonyos paraméterek piaci értékei, pedig csak másodlagos szerepet játszanak. A másik meglepő eredmény empirikus, ami szerint külkereskedelmi többlet, a hazai valuta bizonyos devizapiaci értékei mellett, különös attraktorokat generálhat. _____ In this paper the classical Harrodian growth model is transformed into a representative agent model by its nonlinear extensions and the Keynesian and Schumpeterian traditions. For the proof of the celebrated Lucas critique it is shown that the trajectories of intrinsic economic growth rates either are scattered into a turbulent chaos or lead to a large scale order. It depends on the type of the appropriate consumption function, and the market values of some parameters are playing only secondary role.Another surprising result is empirical: the international trade su±cit may generate strange attractors under some exchange rate values.
Resumo:
In this study it is shown that the nontrivial hyperbolic fixed point of a nonlinear dynamical system, which is formulated by means of the adaptive expectations, corresponds to the unstable equilibrium of Harrod. We prove that this nonlinear dynamical (in the sense of Harrod) model is structurally stable under suitable economic conditions. In the case of structural stability, small changes of the functions (C1-perturbations of the vector field) describing the expected and the true time variation of the capital coefficients do not influence the qualitative properties of the endogenous variables, that is, although the trajectories may slightly change, their structure is the same as that of the unperturbed one, and therefore these models are suitable for long-time predictions. In this situation the critique of Lucas or Engel is not valid. There is no topological conjugacy between the perturbed and unperturbed models; the change of the growth rate between two levels may require different times for the perturbed and unperturbed models.