2 resultados para multiplicative inverse
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The existence of an inverse limit of an inverse system of (probability) measure spaces has been investigated since the very beginning of the birth of the modern probability theory. Results from Kolmogorov [10], Bochner [2], Choksi [5], Metivier [14], Bourbaki [3] among others have paved the way of the deep understanding of the problem under consideration. All the above results, however, call for some topological concepts, or at least ones which are closely related topological ones. In this paper we investigate purely measurable inverse systems of (probability) measure spaces, and give a sucient condition for the existence of a unique inverse limit. An example for the considered purely measurable inverse systems of (probability) measure spaces is also given.
Resumo:
The paper reviews some additive and multiplicative properties of ranking procedures used for generalized tournaments with missing values and multiple comparisons. The methods analysed are the score, generalised row sum and least squares as well as fair bets and its variants. It is argued that generalised row sum should be applied not with a fixed parameter, but a variable one proportional to the number of known comparisons. It is shown that a natural additive property has strong links to independence of irrelevant matches, an axiom judged unfavourable when players have different opponents.