2 resultados para grafi multi-livello social network algebra linguaggi multi layer multislice multiplex

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article investigates the attitudes to inter-firm co-operation in Hungary by analysing a special group of business networks: the business clusters. Following an overview of cluster policy, a wide range of selfproclaimed business clusters are identified. A small elite of these business networks evolves into successful, sustainable innovative business clusters. However, in the majority of cases, these consortia of interfirm co-operation are not based on a mutually satisfactory model, and as a consequence, many clusters do not survive in the longer term. The paper uses the concepts and models of social network theory in order to explain, why and under what circumstances inter-firm co-operation in clusters enhances the competitiveness of the network as a whole, or alternatively, under what circumstances the cluster remains dependent on Government subsidies. The empirical basis of the study is a thorough internet research about the Hungarian cluster movement; a questionnaire based expert survey among managers of clusters and member companies and a set of in-depth interviews among managers of self-proclaimed clusters. The last chapter analyises the applicability of social network theory in the analysis of business networks and a model involving the value chain is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is about the development and the application of an ESRI ArcGIS tool which implements multi-layer, feed-forward artificial neural network (ANN) to study the climate envelope of species. The supervised learning is achieved by backpropagation algorithm. Based on the distribution and the grids of the climate (and edaphic data) of the reference and future periods the tool predicts the future potential distribution of the studied species. The trained network can be saved and loaded. A modeling result based on the distribution of European larch (Larix decidua Mill.) is presented as a case study.