4 resultados para feature based modelling
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A közgazdaságtanban az ágensalapú modellezés egyik alkalmazási területe a makro ökonómia. Ebben a tanulmányban néhány népszerű megtakarítási szabály létét feltételezve adaptív-evolúciós megközelítésben endogén módon próbálunk következtetni e szabályok relatív életképességére. Három különböző típusú ágenst vezetünk be: egy prudens, egy rövidlátó és egy, a permanensjövedelem-elméletnek megfelelően működőt. Rendkívül erős szelekciós nyomás mellett a prudens típus egyértelműen kiszorítja a másik kettőt. A második legéletképesebbnek a rövidlátó típus tűnik, de már közepes szelekciós nyomásnál sem tűnik el egyik típus sem. Szokásos tőkehatékonyság mellett a prudens típus túlzott beruházási tendenciát visz a gazdaságba, és a gazdaság az aranykori megtakarítási rátánál magasabbat ér el. A hitelkorlátok oldása még nagyobb mértékű túlzott beruházáshoz vezethet, a hitelek mennyiségének növekedése mellett a tőketulajdonosok mintegy "kizsákmányoltatják" magukat azokkal, akiknek nincs tőkejövedelmük. A hosszú távú átlagos fogyasztás szempontjából a három típus kiegyensúlyozott aránya adja a legjobb eredményt, ugyanakkor ez jóval nagyobb ingadozással jár, mint amikor csak prudens típusú háztartások léteznek. ____ Agent-based modelling techniques have been employed for some time in macroeconomics. This paper tests some popular saving rules in an adaptive-evolutionary context of looking at their relative survival values. The three types are prudent, short-sighted, and responsive to the permanent-income hypothesis. It is found that where selection pressure is very high, only the prudent type persists. The second most resilient seems to be the short-sighted type, but all three coexist even at medium levels of selection pressure. When the efficiency of capital approaches the level usually assumed in macroeconomics, the prudent type drives the economy towards excessive accumulation of capital, i. e. a long-term savings rate that exceeds the golden rule. If credit constraints are relaxed, this tendency strengthens as credit grows and capital-owners seem to allow themselves to be exploited" by workers. From the angle of average consumption, the best outcome is obtained from a random distribution of types, although this is accompanied by higher volatility.
Resumo:
Nowadays financial institutions due to regulation and internal motivations care more intensively on their risks. Besides previously dominating market and credit risk new trend is to handle operational risk systematically. Operational risk is the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. First we show the basic features of operational risk and its modelling and regulatory approaches, and after we will analyse operational risk in an own developed simulation model framework. Our approach is based on the analysis of latent risk process instead of manifest risk process, which widely popular in risk literature. In our model the latent risk process is a stochastic risk process, so called Ornstein- Uhlenbeck process, which is a mean reversion process. In the model framework we define catastrophe as breach of a critical barrier by the process. We analyse the distributions of catastrophe frequency, severity and first time to hit, not only for single process, but for dual process as well. Based on our first results we could not falsify the Poisson feature of frequency, and long tail feature of severity. Distribution of “first time to hit” requires more sophisticated analysis. At the end of paper we examine advantages of simulation based forecasting, and finally we concluding with the possible, further research directions to be done in the future.
Resumo:
In the years 2004 and 2005 we collected samples of phytoplankton, zooplankton and macroinvertebrates in an artificial small pond in Budapest. We set up a simulation model predicting the abundance of the cyclopoids, Eudiaptomus zachariasi and Ischnura pumilio by considering only temperature as it affects the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature, but the abundance of the three mentioned groups. This discrete-deterministic model could generate similar patterns like the observed one and testing it on historical data was successful. However, because the model was overpredicting the abundances of Ischnura pumilio and Cyclopoida at the end of the year, these results were not considered. Running the model with the data series of climate change scenarios, we had an opportunity to predict the individual numbers for the period around 2050. If the model is run with the data series of the two scenarios UKHI and UKLO, which predict drastic global warming, then we can observe a decrease in abundance and shift in the date of the maximum abundance occurring (excluding Ischnura pumilio, where the maximum abundance increases and it occurs later), whereas under unchanged climatic conditions (BASE scenario) the change in abundance is negligible. According to the scenarios GFDL 2535, GFDL 5564 and UKTR, a transition could be noticed.
Resumo:
Climate change is one of the most crucial ecological problems of our age with great influence. Seasonal dynamics of aquatic communities are — among others — regulated by the climate, especially by temperature. In this case study we attempted the simulation modelling of the seasonal dynamics of a copepod species, Cyclops vicinus, which ranks among the zooplankton community, based on a quantitative database containing ten years of data from the Danube’s Göd area. We set up a simulation model predicting the abundance of Cyclops vicinus by considering only temperature as it affects the abundance of population. The model was adapted to eight years of daily temperature data observed between 1981 and 1994 and was tested successfully with the additional data of two further years. The model was run with the data series of climate change scenarios specified for the period around 2070- 2100. On the other hand we looked for the geographically analogous areas with the Göd region which are mostly similar to the future climate of the Göd area. By means of the above-mentioned points we can get a view how the climate of the region will change by the end of the 21st century, and the way the seasonal dynamics of a chosen planktonic crustacean species may follow this change. According to our results the area of Göd will be similar to the northern region of Greece. The maximum abundance of the examined species occurs a month to one and a half months earlier, moreover larger variances are expected between years in respect of the abundance. The deviations are expected in the direction of smaller or significantly larger abundance not observed earlier.