3 resultados para Zero-One Matrices

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incomplete pairwise comparison matrix was introduced by Harker in 1987 for the case in which the decision maker does not fill in the whole matrix completely due to, e.g., time limitations. However, incomplete matrices occur in a natural way even if the decision maker provides a completely filled in matrix in the end. In each step of the total n(n–1)/2, an incomplete pairwise comparison is given, except for the last one where the matrix turns into complete. Recent results on incomplete matrices make it possible to estimate inconsistency indices CR and CM by the computation of tight lower bounds in each step of the filling in process. Additional information on ordinal inconsistency is also provided. Results can be applied in any decision support system based on pairwise comparison matrices. The decision maker gets an immediate feedback in case of mistypes, possibly causing a high level of inconsistency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM) are of the possible tools for computing the priorities of the alternatives. A method for generating all the solutions of the LSM problem for 3 × 3 and 4 × 4 matrices is discussed in the paper. Our algorithms are based on the theory of resultants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 × 3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4 × 4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n × n PRM is formulated, the elements aij (i < j) of which were randomly chosen from the ratio scale ... ... with equal probability 1/(2M − 1) and a ji is defined as 1/a ij . By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.