22 resultados para United Nations Framework Convention on Climate Change (Organização)

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floods, droughts and monsoons have always disturbed human settlements, but there are more settlements now and more people in the world. Therefore, if a natural disaster happens, more will suffer than ever before. Moreover, climate in the past several decades has been greatly degraded by anthropogenic activity. In some cases, the chain of causality of human influence on the climate is direct and unambiguous (e.g. the effects of irrigation on local humidity), though there are instances where it is less clear. Presently, the scientific consensus (IPCC, 2007) on climate change is that human activity is very likely the cause for the rapid increase of global average temperatures, more generally known as global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There have been more and more words about climate change and global warming in the last few decades. But what do we really understand them? Is it logic that the climate change derived by human behaviour or is it an independent process of nature that occurs no matter how we try to stop it? Is the climate change a global warming or global cooling method? We know for sure that something is changing around us and we heard a million times that if we exhaust the resources of the Earth than we will cause permanent and irreversible damage. In the first part of this chapter we will see the facts. There will be a few different perspectives from a few different institutions publication about the methodology of measurement on climate change. In the second part of the chapter we shall distinguish how big part of the changes may be the results of the human activities, or is it even possible to distinguish what causes the climate change. In the last part of this chapter the IPCC’s scenario will be explained on the case if the process of the climate change can not be stopped, or if human kind does not do anything for mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the methodological aspect of climate change, particularly the aggregation of costs and benefits induced by climate change on individuals, societies, economies and on the whole ecosystem. Assessing the total and/or marginal costs of environmental change is difficult because of wide range of factors that have to be involved. The subsequent study tries to capture the complexity of cost assessment on climate change therefore includes several critical factors such as scenarios and modeling, valuation and estimation, equity and discounting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge on the expected effects of climate change on aquatic ecosystems is defined by three ways. On the one hand, long-term observation in the field serves as a basis for the possible changes; on the other hand, the experimental approach may bring valuable pieces of information to the research field. The expected effects of climate change cannot be studied by empirical approach; rather mathematical models are useful tools for this purpose. Within this study, the main findings of field observations and their implications for future were summarized; moreover, the modelling approaches were discussed in a more detailed way. Some models try to describe the variation of physical parameters in a given aquatic habitat, thus our knowledge on their biota is confined to the findings based on our present observations. Others are destined for answering special issues related to the given water body. Complex ecosystem models are the keys of our better understanding of the possible effects of climate change. Basically, these models were not created for testing the influence of global warming, rather focused on the description of a complex system (e. g. a lake) involving environmental variables, nutrients. However, such models are capable of studying climatic changes as well by taking into consideration a large set of environmental variables. Mostly, the outputs are consistent with the assumptions based on the findings in the field. Since synthetized models are rather difficult to handle and require quite large series of data, the authors proposed a more simple modelling approach, which is capable of examining the effects of global warming. This approach includes weather dependent simulation modelling of the seasonal dynamics of aquatic organisms within a simplified framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our aim was to approach an important and well-investigable phenomenon – connected to a relatively simple but real field situation – in such a way, that the results of field observations could be directly comparable with the predictions of a simulation model-system which uses a simple mathematical apparatus and to simultaneously gain such a hypothesis-system, which creates the theoretical opportunity for a later experimental series of studies. As a phenomenon of the study, we chose the seasonal coenological changes of aquatic and semiaquatic Heteroptera community. Based on the observed data, we developed such an ecological model-system, which is suitable for generating realistic patterns highly resembling to the observed temporal patterns, and by the help of which predictions can be given to alternative situations of climatic circumstances not experienced before (e.g. climate changes), and furthermore; which can simulate experimental circumstances. The stable coenological state-plane, which was constructed based on the principle of indirect ordination is suitable for unified handling of data series of monitoring and simulation, and also fits for their comparison. On the state-plane, such deviations of empirical and model-generated data can be observed and analysed, which could otherwise remain hidden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change affects on insect populations in many ways: it can cause a shift in geographical spread, abundance, or diversity, it can change the location, the timing and the magnitude of outbreaks of pests and it can define the phenological or even the genetic properties of the species. Long-time investigations of special insect populations, simulation models and scenario studies give us very important information about the response of the insects far away and near to our century. Getting to know the potential responses of insect populations to climate change makes us possible to evaluate the adaptation of pest management alternatives as well as to formulate our future management policy. In this paper we apply two simple models, in order to introduce a complex case study for a Sycamore lace bug population. We test how the model works in case the whether conditions are very different from those in our days. Thus, besides we can understand the processes that happen in present, we can analyze the effects of a possible climate change, as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the years 2004 and 2005 we collected samples of phytoplankton, zooplankton and macroinvertebrates in an artificial small pond in Budapest. We set up a simulation model predicting the abundance of the cyclopoids, Eudiaptomus zachariasi and Ischnura pumilio by considering only temperature as it affects the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature, but the abundance of the three mentioned groups. This discrete-deterministic model could generate similar patterns like the observed one and testing it on historical data was successful. However, because the model was overpredicting the abundances of Ischnura pumilio and Cyclopoida at the end of the year, these results were not considered. Running the model with the data series of climate change scenarios, we had an opportunity to predict the individual numbers for the period around 2050. If the model is run with the data series of the two scenarios UKHI and UKLO, which predict drastic global warming, then we can observe a decrease in abundance and shift in the date of the maximum abundance occurring (excluding Ischnura pumilio, where the maximum abundance increases and it occurs later), whereas under unchanged climatic conditions (BASE scenario) the change in abundance is negligible. According to the scenarios GFDL 2535, GFDL 5564 and UKTR, a transition could be noticed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is one of the most crucial ecological problems of our age with great influence. Seasonal dynamics of aquatic communities are — among others — regulated by the climate, especially by temperature. In this case study we attempted the simulation modelling of the seasonal dynamics of a copepod species, Cyclops vicinus, which ranks among the zooplankton community, based on a quantitative database containing ten years of data from the Danube’s Göd area. We set up a simulation model predicting the abundance of Cyclops vicinus by considering only temperature as it affects the abundance of population. The model was adapted to eight years of daily temperature data observed between 1981 and 1994 and was tested successfully with the additional data of two further years. The model was run with the data series of climate change scenarios specified for the period around 2070- 2100. On the other hand we looked for the geographically analogous areas with the Göd region which are mostly similar to the future climate of the Göd area. By means of the above-mentioned points we can get a view how the climate of the region will change by the end of the 21st century, and the way the seasonal dynamics of a chosen planktonic crustacean species may follow this change. According to our results the area of Göd will be similar to the northern region of Greece. The maximum abundance of the examined species occurs a month to one and a half months earlier, moreover larger variances are expected between years in respect of the abundance. The deviations are expected in the direction of smaller or significantly larger abundance not observed earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A climate envelope model was run on the distribution of four coniferous species (European silver fir, European larch, Norway spruce, and Swiss pine). The model was supported by EUFORGEN area database, ArcGIS 10 and PAST software, andREMO climate model. Prediction periods were 2011-40 and 2041-70.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regionális klímaváltozási forgatókönyvek szerint hazánk éghajlata az elkövetkező 90 évben a mainál jóval melegebb, a nyári évszakban csapadékszegényebb, összességében pedig szárazabb lesz. Kutatásunk célja volt felmérni szárazságtűrésük szerint a legjelentősebb faiskolák katalógusában fellelhető fa- és cserjefajokat (a gyűjtésben nem szerepelnek a faj alatti taxonok). A vizsgálatainkban szereplő öt faiskola növénykínálatát a tudományos nevek ellenőrzése után összesítettük, majd ezt követően az egyes fajokat vízigény szerinti kategóriákba soroltuk. A tényleges statisztikai értékelésbe – a 451 összegyűjtött faj tudományos neveinek ellenőrzése után – 420 fajt vontunk be, melyek 20%-a vízigényes, 53%-a közepesen vízigényes és 27%-a szárazságtűrő. Várakozásainkkal ellentétben a vízigényes fajok részaránya kevésnek mondható, ugyanakkor a szárazságtűrő fajok magasabb aránya kívánatos lenne. Ezért, a gyakorlati alkalmazást elősegítve, kiemeltünk olyan nemzetségeket, melyek kereskedelmi forgalmazását meg kellene kezdeni vagy fokozni, mint pl a Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca Zanthoxylum, Zelkova, illetve olyanokat, melyek telepítését a jövőben nem, vagy csak kellő körültekintéssel javasoljuk, mint például a Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron nemzetségek. _____ According to regional climate change scenarios, the climate in Hungary will be warmer. Less precipitation is predicted in the summer seasons so, on the whole, it will be drier over the next 90 years. Our research attempted to survey the ornamental plant species in the most important nurseries in Hungary, in terms of their drought tolerance. The intraspecifi c taxa are not included. The plant assortment of the fi ve nurseries was merged after researching their scientifi c names. We then categorized species to 3 groups of drought tolerance. Out of 451 species, 420 of them were used in the statistical research. 20% of them were water demanding, 53% were medium drought tolerant and 27% were drought tolerant. In contrast to our initial expectation, the proportion of water demanding species was not too high. Nevertheless, the proportion of drought tolerant species should have been greater. We classifi ed the genera to assist in practical application. The trade of some of these species, such as Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca, Zanthoxylum, Zelkova should be initiated or increased in the future. Other species, especially Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron are not recommended due to either their drought intolerance or their high maintenance requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate modeling, which has adequate spatial and temporal resolution, shows that the future climate of the Carpathian Basin will be much more arid and hot than nowadays. The currently used and taught assortment of the ligneous ornamental plants should be urgently revised. It is aimed in my research to collect the species which will probably be introduced in the future. They can be gathered from the Hungarian botanical gardens and research centers and from the spatially analogous territories. The collected taxa should be examined with GIS software if they will really suffer our future climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our study intended to explore the potential distributionshif of Phlebotomusariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. We used climate envelope modeling (CEM) method to determine the ecological requirements of the species and to model the potential distribution for three periods (1961-1990, 2011-2040, and 2041- 2070). We found that by the end of the 2060’s the Southern UK, Germany, entire France and also the western part of Poland can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasishowe the greatest potential northward expansion, from 49°N to 59°N. For all of the studied sand fly species the entire Mediterranean Basin, the Balkan Peninsula, the Carpathian Basin, and northern coastline of the Black Sea are potentially suitable. The length of the predicted active period of the vectors will increase with one or two months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, the impacts of climate change on Lepidoptera species and communities are summarized, regarding already registered changes in case of individual species and assemblies, and possible future effects. These include changes in abundance, distribution ranges (altitude above sea level, geographical distribution), phenology (earlier or later flying, number of generations per year). The paper also contains a short description of the observed impacts of single factors and conditions (temperature, atmospheric CO2 concentration, drought, predators and parasitoids, UV-B radiation) affecting the life of moths and butterflies, and recorded monitoring results of changes in the Lepidoptera communities of some observed areas. The review is closed with some theoretical considerations concerning the characteristics of “winner” species and also the features and conditions needed for a successful invasion, conquest of new territories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the projected future impact of climate change has been analyzed for the quality of living conditions of the European terrestrial vertebrates (amphibians, reptiles, birds, mammals) in the Carpathian Basin. According to the climate scenarios, warmer and drier climatic conditions are likely to occur in the Carpathian Basin by end of this century. Simultaneous analysis of climate parameters, climate simulations and animal range datasets enables us to evaluate the vulnerability of different European species to regional warming and climate change. The spatial climate analogy technique is used to analyze the estimated rapid change of the wild animals’ habitats and their northward migration. For the reference climate data of Debrecen is considered, and three spatial analogue regions are compared. The results suggest that generally a significant decline in habitats is very likely for most of the analyzed animal groups by the end of the 21st century. The largest rate of decline is estimated for birds. However, living conditions for reptiles may improve in the future due to the warmer and drier climatic conditions, which are favourable for these species.