3 resultados para Transmission line modeling

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to the results of the regional climate models our future climate will be warmer and more arid. It has a high importance that the landscape architecture should become acquainted with the expected change to become able to adapt to it. Therefore, it is necessary to draw the future distribution of the plants or to model the shift of the Moesz-line, which characterizes multiple plants simultaneously, to visualize the extent and the direction of the climate change. Our research aimed to model the Moesz-line and display the results on maps, and compare the different modeling methods (Line modeling, Distribution modeling, Isotherm modeling). The model gave impressive results that meet our expectations. Two of the three proved methods showed that the Moesz-line will shift to Central Poland by 2070.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is important to the landscape architects to become acquainted with the results of the regional climate models so they can adapt to the warmer and more arid future climate. Modelling the potential distribution area of certain plants, which was the theme of our former research, can be a convenient method to visualize the effects of the climate change. A similar but slightly better method is modelling the Moesz-line, which gives information on distribution and usability of numerous plants simultaneously. Our aim is to display the results on maps and compare the different modelling methods (Line modelling, Distribution modelling, Isotherm modelling). The results are spectacular and meet our expectations: according to two of the three tested methods the Moesz-line will shift from South Slovakia to Central Poland in the next 60 years.