4 resultados para Third order nonlinear ordinary differential equation

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Az x''+f(x) x'+g(x) = 0 alakú Liénard-típusú differenciálegyenlet központi szerepet játszik az üzleti ciklusok Káldor-Kalecki-féle [3,4] és Goodwin-féle [2] modelljeiben, sőt egy a munkanélküliség és vállalkozás-ösztönzések ciklikus változásait leíró újabb modellben [1] is. De ugyanez a nemlineáris egyenlettípus a gerjesztett ingák és elektromos rezgőkörök elméletét is felöleli [5]. Az ezzel kapcsolatos irodalom nagyrészt a határciklusok létezését vizsgálja (pl. [5]), pedig az alapvető stabilitási kérdések jóval áttekinthetőbb módon kezelhetők, s a kapott eredmények közvetve a határciklusok létezésének feltételeit is sokkal jobban be tudják határolni. Jelen dolgozatban az egyváltozós analízis hatékony nyelvezetével olyan egyszerűen megfogalmazható eredményekhez jutunk, amelyek képesek kitágítani az üzleti és más közgazdasági ciklusok modelljeinek kereteit, illetve pl. az [1]-beli modellhez újabb szemléltető speciális eseteket is nyerünk. ____ The Liénard type differential equation of the form x00 + f(x) ¢ x0 + g(x) = 0 has a central role in business cycle models by Káldor [3], Kalecki [4] and Goodwin [2], moreover in a new model describing the cyclical behavior of unemployment and entrepreneurship [1]. The same type of nonlinear equation explains the features of forced pendulums and electric circuits [5]. The related literature discusses mainly the existence of limit cycles, although the fundamental stability questions of this topic can be managed much more easily. The achieved results also outline the conditions for the existence of limit cycles. In this work, by the effective language of real valued analysis, we obtain easy-formulated results which may broaden the frames of economic and business cycle models, moreover we may gain new illustrative particular cases for e.g., [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tanulmány a variációszámítás gazdasági alkalmazásaiból ismertet hármat. Mindhárom alkalmazás a Leontief-modellen alapszik. Az optimális pályák vizsgálata után arra keressük a választ, hogy az Euler–Lagrange-differenciálegyenlet rendszerrel kapott megoldások valóban optimális megoldásai-e a modelleknek. Arra a következtetésre jut a tanulmány, hogy csak pótlólagos közgazdasági feltételek bevezetésével határozhatók meg az optimális megoldások. Ugyanakkor a megfogalmazott feltételek segítségével az ismertetett modellek egy általánosabb keretbe illeszthetők. A tanulmány végső eredménye az, hogy mind a három modell optimális megoldása a Neumann-sugárnak felel meg. /===/ The study presents three economic applications of variation calculations. All three rely on the Leontief model. After examination of the optimal courses, an answer is sought to whether the solutions to the Euler–Lagrange differential equation system are really opti-mal solutions to the models. The study concludes that the optimal solutions can only be determined by introducing additional economic conditions. At the same time, the models presented can be fitted into a general framework with the help of the conditions outlined. The final conclusion of the study is that the optimal solution of all three models fits into the Neumann band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ennek a cikknek az a célja, hogy áttekintést adjon annak a folyamatnak néhány főbb állomásáról, amit Black, Scholes és Merton opcióárazásról írt cikkei indítottak el a 70-es évek elején, és ami egyszerre forradalmasította a fejlett nyugati pénzügyi piacokat és a pénzügyi elméletet. / === / This review article compares the development of financial theory within and outside Hungary in the last three decades starting with the Black-Scholes revolution. Problems like the term structure of interest rate volatilities which is in the focus of many research internationally has not received the proper attention among the Hungarian economists. The article gives an overview of no-arbitrage pricing, the partial differential equation approach and the related numerical techniques, like the lattice methods in pricing financial derivatives. The relevant concepts of the martingal approach are overviewed. There is a special focus on the HJM framework of the interest rate development. The idea that the volatility and the correlation can be traded is a new horizon to the Hungarian capital market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ebben a tanulmányban ismertetjük a Nöther-tétel lényegi vonatkozásait, és kitérünk a Lie-szimmetriák értelmezésére abból a célból, hogy közgazdasági folyamatokra is alkalmazzuk a Lagrange-formalizmuson nyugvó elméletet. A Lie-szimmetriák dinamikai rendszerekre történő feltárása és viselkedésük jellemzése a legújabb kutatások eredményei e területen. Például Sen és Tabor (1990), Edward Lorenz (1963), a komplex kaotikus dinamika vizsgálatában jelent®s szerepet betöltő 3D modelljét, Baumann és Freyberger (1992) a két-dimenziós Lotka-Volterra dinamikai rendszert, és végül Almeida és Moreira (1992) a három-hullám interakciós problémáját vizsgálták a megfelelő Lie-szimmetriák segítségével. Mi most empirikus elemzésre egy közgazdasági dinamikai rendszert választottunk, nevezetesen Goodwin (1967) ciklusmodelljét. Ennek vizsgálatát tűztük ki célul a leírandó rendszer Lie-szimmetriáinak meghatározásán keresztül. / === / The dynamic behavior of a physical system can be frequently described very concisely by the least action principle. In the centre of its mathematical presentation is a specic function of coordinates and velocities, i.e., the Lagrangian. If the integral of the Lagrangian is stationary, then the system is moving along an extremal path through the phase space, and vice versa. It can be seen, that each Lie symmetry of a Lagrangian in general corresponds to a conserved quantity, and the conservation principle is explained by a variational symmetry related to a dynamic or geometrical symmetry. Briey, that is the meaning of Noether's theorem. This paper scrutinizes the substantial characteristics of Noether's theorem, interprets the Lie symmetries by PDE system and calculates the generators (symmetry vectors) on R. H. Goodwin's cyclical economic growth model. At first it will be shown that the Goodwin model also has a Lagrangian structure, therefore Noether's theorem can also be applied here. Then it is proved that the cyclical moving in his model derives from its Lie symmetries, i.e., its dynamic symmetry. All these proofs are based on the investigations of the less complicated Lotka Volterra model and those are extended to Goodwin model, since both models are one-to-one maps of each other. The main achievement of this paper is the following: Noether's theorem is also playing a crucial role in the mechanics of Goodwin model. It also means, that its cyclical moving is optimal. Generalizing this result, we can assert, that all dynamic systems' solutions described by first order nonlinear ODE system are optimal by the least action principle, if they have a Lagrangian.