2 resultados para Temperature distribution
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Global average temperature has increased and precipitation pattern has altered over the past 100 years due to increases in greenhouse gases. These changes will alter numerous site factors and biochemical processes of vegetative communities such as nutrient and water availability, permafrost thawing, fire regime, biotic interactions and invasion. As a consequence, climate change is expected to alter distribution ranges of many species and communities as well as boundaries of biomes. Shifting of species and vegetation zones northwards and upwards in elevation has already been observed. Besides, several experiments have been conducted and simulations have been run all over the world in order to predict possible range shifts and ecological risks. In this paper, we review literature available in Web of Science on Europe and boreal Eurasia and give an overview of observed and predicted changes in vegetation in these regions. The main trends include advance of the tree line, reduction of the alpine vegetation belt, drought risk, forest diebacks, a shift from coniferous forests to deciduous forests and invasion. It is still controversial if species migration will be able to keep pace with climate change.
Resumo:
Background & Objective: The most northern populations of two sand fly species (Phlebotomus mascittii and Phlebotomus neclectus) in the Carpathian Basin are known from Central Hungary. The most important limiting factor of the distribution of Phlebotomus species in the region is the annual minimum temperature which may be positively affected by the urban heat island and the climate change in the future. Method: Based on the latest case reports of the species, Climate Envelope Model was done for the period 1961-1990 and 2025-2050 to project the potential urban distribution of the species. The climatic data were obtained from RegCM regional climate model and MODIS satellite images. Results: The recent occurrence of the species in Central Hungary indicates that Phlebotomus species can overwinter in non-heated shelters in the built environment. Interpretation & Conclusion: Jointly heat island and future climate change seem to be able to provide suitable environment for the studied species in urban areas in a great extent.