6 resultados para Stochastic ODEs
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A dolgozat célja, hogy rövid bevezetést adjon a folytonos idejű sztochasztikus analízisbe. A hazai pénzügyi oktatási gyakorlat nagyrészt a diszkrét idejű és gyakran diszkrét állapotterű modellekre épül. Ennek oka a folytonos időparaméterű sztochasztikus folyamatok elméletétől való érthető idegenkedés. A folytonos időparaméterű sztochasztikus analízis a modern matematika egyik csúcsteljesítménye, amely teljeskörű matematikai megértése egyrészt feltételezi, hogy az olvasó tisztában van a modern analízis szinte minden részletével; másrészt a matematikai részletek pontos megértése nem sok segítséget jelent a pénzügyi gondolatok elsajátításakor. / === / In the article we present a short, intuitive introduction to stochastic analysis. Our presentation is aimed for economist and we try to discuss only the most elementary properties of the stochastic analysis. Instead of precise proofs we present some simplified intuitive arguments. The central concept of the discussion is the quadratic variation and the Itō's lemma.
Resumo:
We study bankruptcy games where the estate and the claims have stochastic values. We use the Weak Sequential Core as the solution concept for such games. We test the stability of a number of well known division rules in this stochastic setting and find that most of them are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
A kooperatív játékelmélet egyik legjelentősebb eredménye, hogy számos konfliktushelyzetben stabil megoldást nyújt. Ez azonban csak statikus és determinisztikus környezetben alkalmazható jól. Most megmutatjuk a mag egy olyan kiterjesztését - a gyenge szekvenciális magot -, amely képes valós, dinamikus, bizonytalan környezetben is eligazítást nyújtani. A megoldást a csődjátékok példájára alkalmazzuk, és segítségével megvizsgáljuk, hogy a pénzügyi irodalom ismert elosztási szabályai közül melyek vezetnek stabil, fenntartható eredményre. _______ One of the most important achievements of cooperative game theory is to provide a stable solution to numerous conflicts. The solutions it presents, on the other hand, have been limited to situations in a static, deterministic environment. The paper examines how the core can be extended to a more realistic, dynamic and uncertain scenario. The bankruptcy games studied are ones where the value of the estate and of the claims are stochastic, and a Weak Sequential Core is used as the solution concept for them. The author tests the stability of a number of well known division rules in this stochastic setting and finds that most are unstable, except for the Constrained Equal Awards rule, which is the only one belonging to the Weak Sequential Core.
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
We present a general model to find the best allocation of a limited amount of supplements (extra minutes added to a timetable in order to reduce delays) on a set of interfering railway lines. By the best allocation, we mean the solution under which the weighted sum of expected delays is minimal. Our aim is to finely adjust an already existing and well-functioning timetable. We model this inherently stochastic optimization problem by using two-stage recourse models from stochastic programming, building upon earlier research from the literature. We present an improved formulation, allowing for an efficient solution using a standard algorithm for recourse models. We show that our model may be solved using any of the following theoretical frameworks: linear programming, stochastic programming and convex non-linear programming, and present a comparison of these approaches based on a real-life case study. Finally, we introduce stochastic dependency into the model, and present a statistical technique to estimate the model parameters from empirical data.