2 resultados para Stability-indicating method
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Historically, grapevine (Vitis vinifera L.) leaf characterisation has been a driving force in the identification of cultivars. In this study, ampelometric (foliometric) analysis was done on leaf samples collected from hand-pruned, mechanically pruned and minimally pruned ‘Sauvignon blanc’ and ‘Syrah’ vines to estimate the impact of within-vineyard variability and a change in bud load on the stability of leaf properties. The results showed that within-vineyard variability of ampelometric characteristics was high within a cultivar, irrespective of bud load. In terms of the O.I.V. coding system, zero to four class differences were observed between minimum and maximum values of each characteristic. The value of variability of each characteristic was different between the three levels of bud load and the two cultivars. With respect to bud load, the number of shoots per vine had a significant effect on the characteristics of the leaf laminae. Single leaf area and lengths of veins changed significantly for both cultivars, irrespective of treatment, while angle between veins proved to be a stable characteristic. A large number of biometric data can be recorded on a single leaf; the data measured on several leaves, however, are not necessarily unique for a specific cultivar. The leaf characteristics analysed in this study can be divided into two groups according to the response to a change in bud load, i.e. stable (angles between the veins, depths of sinuses) and variable (length of the veins, length of the petiole, single leaf area). The variable characteristics are not recommended to be used in cultivar identification, unless the pruning method/bud load is known.
Resumo:
Az x''+f(x) x'+g(x) = 0 alakú Liénard-típusú differenciálegyenlet központi szerepet játszik az üzleti ciklusok Káldor-Kalecki-féle [3,4] és Goodwin-féle [2] modelljeiben, sőt egy a munkanélküliség és vállalkozás-ösztönzések ciklikus változásait leíró újabb modellben [1] is. De ugyanez a nemlineáris egyenlettípus a gerjesztett ingák és elektromos rezgőkörök elméletét is felöleli [5]. Az ezzel kapcsolatos irodalom nagyrészt a határciklusok létezését vizsgálja (pl. [5]), pedig az alapvető stabilitási kérdések jóval áttekinthetőbb módon kezelhetők, s a kapott eredmények közvetve a határciklusok létezésének feltételeit is sokkal jobban be tudják határolni. Jelen dolgozatban az egyváltozós analízis hatékony nyelvezetével olyan egyszerűen megfogalmazható eredményekhez jutunk, amelyek képesek kitágítani az üzleti és más közgazdasági ciklusok modelljeinek kereteit, illetve pl. az [1]-beli modellhez újabb szemléltető speciális eseteket is nyerünk. ____ The Liénard type differential equation of the form x00 + f(x) ¢ x0 + g(x) = 0 has a central role in business cycle models by Káldor [3], Kalecki [4] and Goodwin [2], moreover in a new model describing the cyclical behavior of unemployment and entrepreneurship [1]. The same type of nonlinear equation explains the features of forced pendulums and electric circuits [5]. The related literature discusses mainly the existence of limit cycles, although the fundamental stability questions of this topic can be managed much more easily. The achieved results also outline the conditions for the existence of limit cycles. In this work, by the effective language of real valued analysis, we obtain easy-formulated results which may broaden the frames of economic and business cycle models, moreover we may gain new illustrative particular cases for e.g., [1].