2 resultados para Simulation-based methods
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Our aim was to approach an important and well-investigable phenomenon – connected to a relatively simple but real field situation – in such a way, that the results of field observations could be directly comparable with the predictions of a simulation model-system which uses a simple mathematical apparatus and to simultaneously gain such a hypothesis-system, which creates the theoretical opportunity for a later experimental series of studies. As a phenomenon of the study, we chose the seasonal coenological changes of aquatic and semiaquatic Heteroptera community. Based on the observed data, we developed such an ecological model-system, which is suitable for generating realistic patterns highly resembling to the observed temporal patterns, and by the help of which predictions can be given to alternative situations of climatic circumstances not experienced before (e.g. climate changes), and furthermore; which can simulate experimental circumstances. The stable coenological state-plane, which was constructed based on the principle of indirect ordination is suitable for unified handling of data series of monitoring and simulation, and also fits for their comparison. On the state-plane, such deviations of empirical and model-generated data can be observed and analysed, which could otherwise remain hidden.
Resumo:
Nowadays financial institutions due to regulation and internal motivations care more intensively on their risks. Besides previously dominating market and credit risk new trend is to handle operational risk systematically. Operational risk is the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. First we show the basic features of operational risk and its modelling and regulatory approaches, and after we will analyse operational risk in an own developed simulation model framework. Our approach is based on the analysis of latent risk process instead of manifest risk process, which widely popular in risk literature. In our model the latent risk process is a stochastic risk process, so called Ornstein- Uhlenbeck process, which is a mean reversion process. In the model framework we define catastrophe as breach of a critical barrier by the process. We analyse the distributions of catastrophe frequency, severity and first time to hit, not only for single process, but for dual process as well. Based on our first results we could not falsify the Poisson feature of frequency, and long tail feature of severity. Distribution of “first time to hit” requires more sophisticated analysis. At the end of paper we examine advantages of simulation based forecasting, and finally we concluding with the possible, further research directions to be done in the future.