9 resultados para Potential Geographical-distribution
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Background & Objective: The most northern populations of two sand fly species (Phlebotomus mascittii and Phlebotomus neclectus) in the Carpathian Basin are known from Central Hungary. The most important limiting factor of the distribution of Phlebotomus species in the region is the annual minimum temperature which may be positively affected by the urban heat island and the climate change in the future. Method: Based on the latest case reports of the species, Climate Envelope Model was done for the period 1961-1990 and 2025-2050 to project the potential urban distribution of the species. The climatic data were obtained from RegCM regional climate model and MODIS satellite images. Results: The recent occurrence of the species in Central Hungary indicates that Phlebotomus species can overwinter in non-heated shelters in the built environment. Interpretation & Conclusion: Jointly heat island and future climate change seem to be able to provide suitable environment for the studied species in urban areas in a great extent.
Resumo:
Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.
Resumo:
Leishmaniasis is one of the most important emerging vector-borne diseases in Western Eurasia. Although winter minimum temperatures limit the present geographical distribution of the vector Phlebotomus species, the heat island effect of the cities and the anthropogenic heat emission together may provide the appropriate environment for the overwintering of sand flies. We studied the climate tempering effect of thermal bridges and the heat island effect in Budapest, Hungary. Thermal imaging was used to measure the heat surplus of heat bridges. The winter heat island effect of the city was evaluated by numerical analysis of the measurements of the Aqua sensor of satellite Terra. We found that the surface temperature of thermal bridges can be at least 3-7 °C higher than the surrounding environment. The heat emission of thermal bridges and the urban heat island effect together can cause at least 10 °C higher minimum ambient temperature in winter nights than the minimum temperature of the peri-urban areas. This milder micro-climate of the built environment can enable the potential overwintering of some important European Phlebotomus species. The anthropogenic heat emission of big cities may explain the observed isolated northward populations of Phlebotomus ariasi in Paris and Phlebotomus neglectus in the agglomeration of Budapest.
Resumo:
The potential future distribution of four Mediterranean pines was aimed to be modeled supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The studied species were Pinus brutia, Pinus halepensis, Pinus pinaster, and Pinus pinea. The climate data were available in a 25 km resolution grid for the reference period (1961-90) and two future periods (2011-40, 2041-70). The climate model was based on the IPCC SRES A1B scenario. The model results show explicit shift of the distributions to the north in case of three of the four studied species. The future (2041-70) climate of Western Hungary seems to be suitable for Pinus pinaster.
Resumo:
In this review, the impacts of climate change on Lepidoptera species and communities are summarized, regarding already registered changes in case of individual species and assemblies, and possible future effects. These include changes in abundance, distribution ranges (altitude above sea level, geographical distribution), phenology (earlier or later flying, number of generations per year). The paper also contains a short description of the observed impacts of single factors and conditions (temperature, atmospheric CO2 concentration, drought, predators and parasitoids, UV-B radiation) affecting the life of moths and butterflies, and recorded monitoring results of changes in the Lepidoptera communities of some observed areas. The review is closed with some theoretical considerations concerning the characteristics of “winner” species and also the features and conditions needed for a successful invasion, conquest of new territories.
Resumo:
A solid body of empirical, experimental and theoretical evidence accumulated over recent years indicated that freshwater plankton experienced advance in phenology in response to climate change. Despite rapidly growing evidence for phenological changes, we still lack a comprehensive understanding of how climate change alters plankton phenology in freshwater. To overcome current limitations, we need to shed some light on trends and constraints in current research. The goal of this study is to identify current trends and gaps based on analysis of selected papers, by the help of which we can facilitate further advance in the field. We searched the literature for plankton phenology and confined our search to studies where climate change has been proposed to alter plankton phenology and rates of changes were quantified. We did not restrict our search for empirical ontributions; experimental and theoretical studies were considered as well. In the following we discuss the spatio-temporal setting of selected studies, contributions of different taxonomic groups, emerging methodological constraints, measures of phenological trends; and finally give a list of recommendations on how to improve our understanding in the field. The majority of studies were confined to deep lakes with a skewed geographical distribution toward Central Europe, where scientists have long been engaged in limnology. Despite these findings, recent studies suggest that plankton in running waters may experience change in phenology with similar magnitude. Average rate of advancement in phenology of freshwater plankton exceeded those of the marine plankton and the global average. Increasing study duration was not coupled either with increasing contribution of discontinuous data or with increasing rates of phenological changes. Future studies may benefit from i) delivering longterm data across scientific and political boundaries; ii) extending study sites to broader geographical areas with a more explicit consideration of running waters; iii) applying plankton functional groups; iv) increasing the application of satellite data to quantify phytoplankton bloom phenology; v) extending analyses of time series beyond the spring period; vi) using various metrics to quantify variation in phenology; vii) combining empirical, experimental and theoretical approaches; and last but not least viii) paying more attention to emergence dynamics, nonresponding species and trophic mismatch.
Resumo:
The importance and risk of emerging mosquito borne diseases is going to increase in the European temperate areas due to climate change. The present and upcoming climates of Transdanubia seem to be suitable for the main vector of Chikungunya virus, the Asian tiger mosquito, Aedes albopictus Skuse (syn. Stegomyia albopicta). West Nile fever is recently endemic in Hungary. We used climate envelope modeling to predict the recent and future potential distribution/occurrence areas of the vector and the disease. We found that climate can be sufficient to explain the recently observed area of A. albopictus, while in the case of West Nile fever, the migration routes of reservoir birds, the run of the floodplains, and the position of lakes are also important determinants of the observed occurrence.
Resumo:
Our study intended to explore the potential distributionshif of Phlebotomusariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. We used climate envelope modeling (CEM) method to determine the ecological requirements of the species and to model the potential distribution for three periods (1961-1990, 2011-2040, and 2041- 2070). We found that by the end of the 2060’s the Southern UK, Germany, entire France and also the western part of Poland can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasishowe the greatest potential northward expansion, from 49°N to 59°N. For all of the studied sand fly species the entire Mediterranean Basin, the Balkan Peninsula, the Carpathian Basin, and northern coastline of the Black Sea are potentially suitable. The length of the predicted active period of the vectors will increase with one or two months.
Resumo:
The impact of climate change on the potential distribution of four Mediterranean pine species – Pinus brutia Ten., Pinus halepensis Mill., Pinus pinaster Aiton, and Pinus pinea L. – was studied by the Climate Envelope Model (CEM) to examine whether these species are suitable for the use as ornamental plants without frost protection in the Carpathian Basin. The model was supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The climate data were available in a 25 km resolution grid for the reference period (1961–1990) and two future periods (2011–2040, 2041–2070). The regional climate model was based on the IPCC SRES A1B scenario. While the potential distribution of P. brutia was not predicted to expand remarkably, an explicit shift of the distribution of the other three species was shown. Northwestern African distribution segments seem to become abandoned in the future. Current distribution of P. brutia may be highly endangered by the climate change. P. halepensis in the southern part and P. pinaster in the western part of the Carpathian Basin may find suitable climatic conditions in the period of 2041–2070.