2 resultados para Polynomial-time algorithm

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A correlation scheme (leading to a special equilibrium called “soft” correlated equilibrium) is applied for two-person finite games in extensive form with perfect information. Randomization by an umpire takes place over the leaves of the game tree. At every decision point players have the choice either to follow the recommendation of the umpire blindly or freely choose any other action except the one suggested. This scheme can lead to Pareto-improved outcomes of other correlated equilibria. Computational issues of maximizing a linear function over the set of soft correlated equilibria are considered and a linear-time algorithm in terms of the number of edges in the game tree is given for a special procedure called “subgame perfect optimization”.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider linearly weighted versions of the least core and the (pre)nucleolus and investigate the reduction possibilities in their computation. We slightly extend some well-known related results and establish their counterparts by using the dual game. Our main results imply, for example, that if the core of the game is not empty, all dually inessential coalitions (which can be weakly minorized by a partition in the dual game) can be ignored when we compute the per-capita least core and the per-capita (pre)nucleolus from the dual game. This could lead to the design of polynomial time algorithms for the per-capita (and other monotone nondecreasingly weighted versions of the) least core and the (pre)nucleolus in specific classes of balanced games with polynomial many dually esential coalitions.