3 resultados para Perron’s eigenvector

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. It provides with ratio-scale measurements of the prioirities of elements on the various leveles of a hierarchy. These priorities are obtained through the pairwise comparisons of elements on one level with reference to each element on the immediate higher level. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM), Logarithmic Least Squares Method (LLSM), Weighted Least Squares Method (WLSM) and Chi Squares Method (X2M) are of the tools for computing the priorities of the alternatives. This paper studies a method for generating all the solutions of the LSM problems for 3 × 3 matrices. We observe non-uniqueness and rank reversals by presenting numerical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM) are of the possible tools for computing the priorities of the alternatives. A method for generating all the solutions of the LSM problem for 3 × 3 and 4 × 4 matrices is discussed in the paper. Our algorithms are based on the theory of resultants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A special class of preferences, given by a directed acyclic graph, is considered. They are represented by incomplete pairwise comparison matrices as only partial information is available: for some pairs no comparison is given in the graph. A weighting method satisfies the property linear order preservation if it always results in a ranking such that an alternative directly preferred to another does not have a lower rank. We study whether two procedures, the Eigenvector Method and the Logarithmic Least Squares Method meet this axiom. Both weighting methods break linear order preservation, moreover, the ranking according to the Eigenvector Method depends on the incomplete pairwise comparison representation chosen.