6 resultados para Ornamental plants

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance and risk of vector-borne diseases (eg. leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species – a parasite of leishmaniasis, and its vectors – may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance and risk of vector-borne diseases (e.g., leishmaniasis, West Nile Virus, Lyme borreliosis) is going to increase in the European temperate areas due to climate change. Our previous studies have shown that the potential distribution of Leishmania infantum and some Phlebotomus (sand fly) species – a parasite of leishmaniasis, and its vectors – may be expanded even to the southern coastline of the Baltic Sea by the end of the 21st century. The lowland areas of the Carpathian Basin and the main part of Hungary are projected to be suitable for the studied sand fly vectors in the near future. It is important to find some indicator plants to examine whether the sand flies are able to live in a certain climate at a certain time. We studied several Mediterranean and Sub-Mediterranean plant species, and we found that the aggregated distribution of three ligneous species (Juniperus oxycedrus L., Quercus ilex L. and Pinus brutia Ten.) shows high correlation with the union distribution of five sand flies (Phlebotomus ariasi Tonn., Ph. neglectus Tonn., Ph. perfiliewi Parrot, Ph. perniciosus Newst. and Ph. tobbi Adler, Theodor et Lourie). Since these Mediterranean species are highly tolerant of the edaphic characteristics of the planting site, they may prove to be good indicators. The present and upcoming climate of Hungary is seen to be suitable for the selected indicator plant species, and it draws attention to and verifies the potential of the expansion of sand flies, which has been proved by some recent observations of the vectors in Southern Hungary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The climate modeling, which has adequate spatial and temporal resolution, shows that the future climate of the Carpathian Basin will be much more arid and hot than nowadays. The currently used and taught assortment of the ligneous ornamental plants should be urgently revised. It is aimed in my research to collect the species which will probably be introduced in the future. They can be gathered from the Hungarian botanical gardens and research centers and from the spatially analogous territories. The collected taxa should be examined with GIS software if they will really suffer our future climate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of climate change on the potential distribution of four Mediterranean pine species – Pinus brutia Ten., Pinus halepensis Mill., Pinus pinaster Aiton, and Pinus pinea L. – was studied by the Climate Envelope Model (CEM) to examine whether these species are suitable for the use as ornamental plants without frost protection in the Carpathian Basin. The model was supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The climate data were available in a 25 km resolution grid for the reference period (1961–1990) and two future periods (2011–2040, 2041–2070). The regional climate model was based on the IPCC SRES A1B scenario. While the potential distribution of P. brutia was not predicted to expand remarkably, an explicit shift of the distribution of the other three species was shown. Northwestern African distribution segments seem to become abandoned in the future. Current distribution of P. brutia may be highly endangered by the climate change. P. halepensis in the southern part and P. pinaster in the western part of the Carpathian Basin may find suitable climatic conditions in the period of 2041–2070.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Possible effects of climate change means great challenges to landscape design professionals in Hungary. Our climate will shift towards the Mediterranean and we have to prepare for this with among others, choosing correctly the plants to be planted. Teaching garden design dendrology has not recognized yet the necessity and urgency of this matter. Quick measures are required due to the long life-time and slow development of woody taxons. This paper presents the double relationship between landscape design and climate change emphasizing the outdoor architectural methods of adjustment. Such techniques recognized abroad are presented like precipitation drainage by vegetation and extensive green roof. Finally the effects of climate change on ornamental plants application are presented together with the associated project started at the Corvinus University of Budapest in 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regionális klímaváltozási forgatókönyvek szerint hazánk éghajlata az elkövetkező 90 évben a mainál jóval melegebb, a nyári évszakban csapadékszegényebb, összességében pedig szárazabb lesz. Kutatásunk célja volt felmérni szárazságtűrésük szerint a legjelentősebb faiskolák katalógusában fellelhető fa- és cserjefajokat (a gyűjtésben nem szerepelnek a faj alatti taxonok). A vizsgálatainkban szereplő öt faiskola növénykínálatát a tudományos nevek ellenőrzése után összesítettük, majd ezt követően az egyes fajokat vízigény szerinti kategóriákba soroltuk. A tényleges statisztikai értékelésbe – a 451 összegyűjtött faj tudományos neveinek ellenőrzése után – 420 fajt vontunk be, melyek 20%-a vízigényes, 53%-a közepesen vízigényes és 27%-a szárazságtűrő. Várakozásainkkal ellentétben a vízigényes fajok részaránya kevésnek mondható, ugyanakkor a szárazságtűrő fajok magasabb aránya kívánatos lenne. Ezért, a gyakorlati alkalmazást elősegítve, kiemeltünk olyan nemzetségeket, melyek kereskedelmi forgalmazását meg kellene kezdeni vagy fokozni, mint pl a Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca Zanthoxylum, Zelkova, illetve olyanokat, melyek telepítését a jövőben nem, vagy csak kellő körültekintéssel javasoljuk, mint például a Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron nemzetségek. _____ According to regional climate change scenarios, the climate in Hungary will be warmer. Less precipitation is predicted in the summer seasons so, on the whole, it will be drier over the next 90 years. Our research attempted to survey the ornamental plant species in the most important nurseries in Hungary, in terms of their drought tolerance. The intraspecifi c taxa are not included. The plant assortment of the fi ve nurseries was merged after researching their scientifi c names. We then categorized species to 3 groups of drought tolerance. Out of 451 species, 420 of them were used in the statistical research. 20% of them were water demanding, 53% were medium drought tolerant and 27% were drought tolerant. In contrast to our initial expectation, the proportion of water demanding species was not too high. Nevertheless, the proportion of drought tolerant species should have been greater. We classifi ed the genera to assist in practical application. The trade of some of these species, such as Cupressus, Eucommia, Halimodendron, Paliurus, Pyrus, Rhus, Yucca, Zanthoxylum, Zelkova should be initiated or increased in the future. Other species, especially Clematis, Hydrangea, Liquidambar, Magnolia, Rhododendron are not recommended due to either their drought intolerance or their high maintenance requirement.