2 resultados para Multi-scale modeling
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A szerző az alkalmazott többszektoros modellezés területén a lineáris programozási modellektől a számszerűsített általános egyensúlyi modellekig végbement változásokat tekinti át. Egy rövid történeti visszapillantás után a lineáris programozás módszereire épülő nemzetgazdasági szintű modellekkel összevetve mutatja be az általános egyensúlyi modellek közös, illetve eltérő jellemzőit. Egyidejűleg azt is érzékelteti, hogyan lehet az általános egyensúlyi modelleket a gazdaságpolitikai célok konzisztenciájának, a célok közötti átváltási lehetőségek elemzésére és általában a gazdaságpolitikai elképzelések érzékenységi vizsgálatára felhasználni. A szerző az elméleti-módszertani kérdések taglalását számszerűsített általános egyensúlyi modell segítségével illusztrálja. _______ The author surveys the changes having taken place in the field of multi-sector modeling, from the linear programming models to the quantified general equilibrium models. After a brief historical retrospection he presents the common and different characteristic features of the general equilibrium models by comparing them with the national economic level models based on the methods of linear programming. He also makes clear how the general equilibrium models can be used for analysing the consistency of economic policy targets, for the investigation of trade-off possibilities among the targets and, in general, for sensitivity analyses of economic policy targets. The discussion of theoretical and methodological quuestions is illustrated by the author with the aid of a quantified general equilibrium model.
Resumo:
This paper is about the development and the application of an ESRI ArcGIS tool which implements multi-layer, feed-forward artificial neural network (ANN) to study the climate envelope of species. The supervised learning is achieved by backpropagation algorithm. Based on the distribution and the grids of the climate (and edaphic data) of the reference and future periods the tool predicts the future potential distribution of the studied species. The trained network can be saved and loaded. A modeling result based on the distribution of European larch (Larix decidua Mill.) is presented as a case study.