8 resultados para Mathematical and Computer Modelling
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
In the context of discrete districting problems with geographical constraints, we demonstrate that determining an (ex post) unbiased districting, which requires that the number of representatives of a party should be proportional to its share of votes, turns out to be a computationally intractable (NP-complete) problem. This raises doubts as to whether an independent jury will be able to come up with a “fair” redistricting plan in case of a large population, that is, there is no guarantee for finding an unbiased districting (even if such exists). We also show that, in the absence of geographical constraints, an unbiased districting can be implemented by a simple alternating-move game among the two parties.
Resumo:
A distance-based inconsistency indicator, defined by the third author for the consistency-driven pairwise comparisons method, is extended to the incomplete case. The corresponding optimization problem is transformed into an equivalent linear programming problem. The results can be applied in the process of filling in the matrix as the decision maker gets automatic feedback. As soon as a serious error occurs among the matrix elements, even due to a misprint, a significant increase in the inconsistency index is reported. The high inconsistency may be alarmed not only at the end of the process of filling in the matrix but also during the completion process. Numerical examples are also provided.
Resumo:
An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper.
Resumo:
Nowadays financial institutions due to regulation and internal motivations care more intensively on their risks. Besides previously dominating market and credit risk new trend is to handle operational risk systematically. Operational risk is the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events. First we show the basic features of operational risk and its modelling and regulatory approaches, and after we will analyse operational risk in an own developed simulation model framework. Our approach is based on the analysis of latent risk process instead of manifest risk process, which widely popular in risk literature. In our model the latent risk process is a stochastic risk process, so called Ornstein- Uhlenbeck process, which is a mean reversion process. In the model framework we define catastrophe as breach of a critical barrier by the process. We analyse the distributions of catastrophe frequency, severity and first time to hit, not only for single process, but for dual process as well. Based on our first results we could not falsify the Poisson feature of frequency, and long tail feature of severity. Distribution of “first time to hit” requires more sophisticated analysis. At the end of paper we examine advantages of simulation based forecasting, and finally we concluding with the possible, further research directions to be done in the future.
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
The correct modelling of long- and short-term seasonality is a very interesting issue. The choice between the deterministic and stochastic modelling of trend and seasonality and their implications are as relevant as the case of deterministic and stochastic trends itself. The study considers the special case when the stochastic trend and seasonality do not evolve independently and the usual differencing filters do not apply. The results are applied to the day-ahead (spot) trading data of some main European energy exchanges (power and natural gas).
Resumo:
This article is aimed at considering how an algorithmic problem - more precisely a sorting problem - can be used in an informatics class in primary and secondary education to make students mobilize the largest possible amount of their intellectual skills in the problem solving process. We will be outlining a method which essentially forces students to utilize their mathematical knowledge besides algorithmization in order to provide an efficient solution. What is more, they are expected to use efficiently a tool that has so far not been associated with creative thinking. Sorting is meant to be just an example, through which our thoughts can easily be demonstrated, but - of course the method of education outlined can be linked to several other algorithmic problems, as well.