7 resultados para MONOTONICITY
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A cikk a páros összehasonlításokon alapuló pontozási eljárásokat tárgyalja axiomatikus megközelítésben. A szakirodalomban számos értékelő függvényt javasoltak erre a célra, néhány karakterizációs eredmény is ismert. Ennek ellenére a megfelelő módszer kiválasztása nem egy-szerű feladat, a különböző tulajdonságok bevezetése elsősorban ebben nyújthat segítséget. Itt az összehasonlított objektumok teljesítményén érvényesülő monotonitást tárgyaljuk az önkonzisztencia és önkonzisztens monotonitás axiómákból kiindulva. Bemutatásra kerülnek lehetséges gyengítéseik és kiterjesztéseik, illetve egy, az irreleváns összehasonlításoktól való függetlenséggel kapcsolatos lehetetlenségi tétel is. A tulajdonságok teljesülését három eljárásra, a klasszikus pontszám eljárásra, az ezt továbbfejlesztő általánosított sorösszegre és a legkisebb négyzetek módszerére vizsgáljuk meg, melyek mindegyike egy lineáris egyenletrendszer megoldásaként számítható. A kapott eredmények új szempontokkal gazdagítják a pontozási eljárás megválasztásának kérdését. _____ The paper provides an axiomatic analysis of some scoring procedures based on paired comparisons. Several methods have been proposed for these generalized tournaments, some of them have been also characterized by a set of properties. The choice of an appropriate method is supported by a discussion of their theoretical properties. In the paper we focus on the connections of self-consistency and self-consistent-monotonicity, two axioms based on the comparisons of object's performance. The contradiction of self-consistency and independence of irrel-evant matches is revealed, as well as some possible reductions and extensions of these properties. Their satisfiability is examined through three scoring procedures, the score, generalised row sum and least squares methods, each of them is calculated as a solution of a system of linear equations. Our results contribute to the problem of finding a proper paired comparison based scoring method.
Resumo:
In finance risk capital allocation raises important questions both from theoretical and practical points of view. How to share risk of a portfolio among its subportfolios? How to reserve capital in order to hedge existing risk and how to assign this to different business units? We use an axiomatic approach to examine risk capital allocation, that is we call for fundamental properties of the methods. Our starting point is Csóka and Pintér (2011) who show by generalizing Young (1985)'s axiomatization of the Shapley value that the requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity are irreconcilable given that risk is quantified by a coherent measure of risk. In this paper we look at these requirements using analytic and simulations tools. We examine allocation methods used in practice and also ones which are theoretically interesting. Our main result is that the problem raised by Csóka and Pintér (2011) is indeed relevant in practical applications, that is it is not only a theoretical problem. We also believe that through the characterizations of the examined methods our paper can serve as a useful guide for practitioners.
Resumo:
We characterize the preference domains on which the Borda count satisfies Maskin monotonicity. The basic concept is the notion of a "cyclic permutation domain" which arises by fixing one particular ordering of alternatives and including all its cyclic permutations. The cyclic permutation domains are exactly the maximal domains on which the Borda count is strategy-proof when combined with every possible tie breaking rule. It turns out that the Borda count is monotonic on a larger class of domains. We show that the maximal domains on which the Borda count satisfies Maskin monotonicity are the "cyclically nested permutation domains" which are obtained from the cyclic permutation domains in an appropriately specified recursive way. ------ *We thank József Mala for posing the question of Nash implementability on restricted domains that led to this research. We are very grateful to two anonymous referees and an associate editor for their helpful comments and suggestions. The second author gratefully acknowledges financial support from the Hungarian Academy of Sciences (MTA) through the Bolyai János research fellowship.
Resumo:
Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to financial risk. We show that by using a coherent measure of risk it is impossible to allocate risk satisfying the natural requirements of (Solution) Core Compatibility, Equal Treatment Property and Strong Monotonicity. To obtain the result we characterize the Shapley value on the class of totally balanced games and also on the class of exact games.
Resumo:
A kockázat jó mérése és elosztása elengedhetetlen a bankok, biztosítók, befektetési alapok és egyéb pénzügyi vállalkozások belső tőkeallokációjához vagy teljesítményértékeléséhez. A cikkben bemutatjuk, hogy a koherens kockázati mértékek axiómáit nem likvid portfóliók esetén is el lehet várni. Így mérve a kockázatot, ismertetünk a kockázatelosztásra vonatkozó két kooperatív játékelméleti cikket. Az első optimista, eszerint mindig létezik stabil, az alegységek minden koalíciója által elfogadható, általános módszer a kockázat (tőke) elosztására. A második cikk pesszimista, mert azt mondja ki, hogy ha a stabilitás mellett igazságosak is szeretnénk lenni, akkor egy lehetetlenségi tételbe ütközünk. / === / Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to fi nancial risk. We argue that the axioms of coherent measures of risk are valid for illiquid portfolios as well. Then, we present the results of two papers on allocating risk measured by a coherent measure of risk. Assume a bank has some divisions. According to the fi rst paper there is always a stable allocation of risk capital, which is not blocked by any coalition of the divisions, that is there is a core compatible allocation rule (we present some examples for risk allocation rules). The second paper considers two more natural requirements, Equal Treatment Property and Strong Monotonicity. Equal Treatment Property makes sure that similar divisions are treated symmetrically, that is if two divisions make the same marginal risk contribution to all the coalition of divisions not containing them, then the rule should allocate them the very same risk capital. Strong Monotonicity requires that if the risk environment changes in such a way that the marginal contribution of a division is not decreasing, then its allocated risk capital should not decrease either. However, if risk is evaluated by any coherent measure of risk, then there is no risk allocation rule satisfying Core Compatibility, Equal Treatment Property and Strong Monotonicity, we encounter an impossibility result.
Resumo:
Az életben számtalan olyan esettel találkozunk, amikor egy jószág iránti kereslet meghaladja a rendelkezésre álló kínálatot. Példaként említhetjük a kárpótlási igényeket, egy csődbement cég hitelezőinek igényeit, valamely szerv átültetésére váró betegek sorát stb. Ilyen helyzetekben valamilyen eljárás szerint oszthatjuk el a szűkös mennyiséget a szereplők között. Szokás megkülönböztetni a determinisztikus és a sztochasztikus elosztási eljárásokat, jóllehet sok esetben csak a determinisztikus eljárásokat alkalmazzák. Azonban igazságossági szempontból gyakran használnak sztochasztikus elosztási eljárásokat is, mint például tette azt az Egyesült államok hadserege a második világháború végét követően a külföldön állomásozó katonáinak visszavonásakor, illetve a vietnami háború során behívandó személyek kiválasztásakor. / === / We investigated the minimal variance methods introduced in Tasnádi [6] based on seven popular axioms. We proved that if a deterministic rationing method satisfies demand monotonicity, resource monotonicity, equal treatment of equals and self-duality, than the minimal variance methods associated with the given deterministic rationing method also satisfies demand monotonicity, resource monotonicity, equal treatment of equals and self-duality. Furthermore, we found that the consistency, the lower composition and the upper composition of a deterministic rationing method does not imply the consistency, the lower composition and the upper composition of a minimal variance method associated with the given deterministic rationing method.
Resumo:
Measuring and allocating risk properly are crucial for performance evaluation and internal capital allocation of portfolios held by banks, insurance companies, investment funds and other entities subject to financial risk. We show that by using coherent measures of risk it is impossible to allocate risk satisfying simultaneously the natural requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity. To obtain the result we characterize the Shapley value on the class of totally balanced games and also on the class of exact games.