3 resultados para Local Cluster Neural Networks (LCNN)
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The article attempts to answer the question whether or not the latest bankruptcy prediction techniques are more reliable than traditional mathematical–statistical ones in Hungary. Simulation experiments carried out on the database of the first Hungarian bankruptcy prediction model clearly prove that bankruptcy models built using artificial neural networks have higher classification accuracy than models created in the 1990s based on discriminant analysis and logistic regression analysis. The article presents the main results, analyses the reasons for the differences and presents constructive proposals concerning the further development of Hungarian bankruptcy prediction.
Resumo:
Can neural networks learn to select an alternative based on a systematic aggregation of convicting individual preferences (i.e. a 'voting rule')? And if so, which voting rule best describes their behavior? We show that a prominent neural network can be trained to respect two fundamental principles of voting theory, the unanimity principle and the Pareto property. Building on this positive result, we train the neural network on profiles of ballots possessing a Condorcet winner, a unique Borda winner, and a unique plurality winner, respectively. We investigate which social outcome the trained neural network chooses, and find that among a number of popular voting rules its behavior mimics most closely the Borda rule. Indeed, the neural network chooses the Borda winner most often, no matter on which voting rule it was trained. Neural networks thus seem to give a surprisingly clear-cut answer to one of the most fundamental and controversial problems in voting theory: the determination of the most salient election method.
Resumo:
Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.