2 resultados para Latent Threshold
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
It is often assumed (for analytical convenience, but also in accordance with common intuition) that consumer preferences are convex. In this paper, we consider circumstances under which such preferences are (or are not) optimal. In particular, we investigate a setting in which goods possess some hidden quality with known distribution, and the consumer chooses a bundle of goods that maximizes the probability that he receives some threshold level of this quality. We show that if the threshold is small relative to consumption levels, preferences will tend to be convex; whereas the opposite holds if the threshold is large. Our theory helps explain a broad spectrum of economic behavior (including, in particular, certain common commercial advertising strategies), suggesting that sensitivity to information about thresholds is deeply rooted in human psychology.
Resumo:
A kockázat statisztikai értelemben közvetlenül nem mérhető, azaz látens fogalom éppen úgy, mint a gazdasági fejlettség, a szervezettség vagy az intelligencia. Mi bennünk a közös? A kockázat is komplex fogalom, több mérhető tényezőt foglal magában, és bár sok tényezőjét mérjük, fel sem tételezzük, hogy pontos eredményt kapunk. Ebben a megközelítésben az elemző kezdettől fogva tudja, hogy hiányos az ismerete. Ezt Bélyácz [2011[ nyomán úgy is megfogalmazhatjuk: „A statisztikusok tudják, hogy valamit éppen nem tudnak.” / === / From statistical point of view risk, like economic development is a latent concept. Typically there is no one number which can explicitly estimate or project risk. Variance is used as a proxy in finance to measure risk. Other professions are using other concepts for risk. Underwriting is the most important step in insurance business to analyse exposure. Actuaries evaluate average claim size and the probability of claim to calculate risk. Bayesian credibility can be used to calculate insurance premium combining frequencies and empirical knowledge, as a prior. Different types of risks can be classified into a risk matrix to separate insurable risk. Only this category can be analysed by multivariate statistical methods, which are based on statistical data. Sample size and frequency of events are relevant not only in insurance, but in pension and investment decisions as well.