4 resultados para LSM

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. It provides with ratio-scale measurements of the prioirities of elements on the various leveles of a hierarchy. These priorities are obtained through the pairwise comparisons of elements on one level with reference to each element on the immediate higher level. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM), Logarithmic Least Squares Method (LLSM), Weighted Least Squares Method (WLSM) and Chi Squares Method (X2M) are of the tools for computing the priorities of the alternatives. This paper studies a method for generating all the solutions of the LSM problems for 3 × 3 matrices. We observe non-uniqueness and rank reversals by presenting numerical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is a follow up to "Solution of the least squares method problem of pairwise comparisons matrix" by Bozóki published by this journal in 2008. Familiarity with this paper is essential and assumed. For lower inconsistency and decreased accuracy, our proposed solutions run in seconds instead of days. As such, they may be useful for researchers willing to use the least squares method (LSM) instead of the geometric means (GM) method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Analytic Hierarchy Process (AHP) is one of the most popular methods used in Multi-Attribute Decision Making. The Eigenvector Method (EM) and some distance minimizing methods such as the Least Squares Method (LSM) are of the possible tools for computing the priorities of the alternatives. A method for generating all the solutions of the LSM problem for 3 × 3 and 4 × 4 matrices is discussed in the paper. Our algorithms are based on the theory of resultants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the paper is to present a new global optimization method for determining all the optima of the Least Squares Method (LSM) problem of pairwise comparison matrices. Such matrices are used, e.g., in the Analytic Hierarchy Process (AHP). Unlike some other distance minimizing methods, LSM is usually hard to solve because of the corresponding nonlinear and non-convex objective function. It is found that the optimization problem can be reduced to solve a system of polynomial equations. Homotopy method is applied which is an efficient technique for solving nonlinear systems. The paper ends by two numerical example having multiple global and local minima.