1 resultado para LEISHMANIA MAJOR
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.