2 resultados para Hounsfield Units
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A cikkben paneladatok segítségével a magyar gabonatermesztő üzemek 2001 és 2009 közötti technikai hatékonyságát vizsgáljuk. A technikai hatékonyság szintjének becslésére egy hagyományos sztochasztikus határok modell (SFA) mellett a látens csoportok modelljét (LCM) használjuk, amely figyelembe veszi a technológiai különbségeket is. Eredményeink arra utalnak, hogy a technológiai heterogenitás fontos lehet egy olyan ágazatban is, mint a szántóföldi növénytermesztés, ahol viszonylag homogén technológiát alkalmaznak. A hagyományos, azonos technológiát feltételező és a látens osztályok modelljeinek összehasonlítása azt mutatja, hogy a gabonatermesztő üzemek technikai hatékonyságát a hagyományos modellek alábecsülhetik. _____ The article sets out to analyse the technical efficiency of Hungarian crop farms between 2001 and 2009, using panel data and employing both standard stochastic frontier analysis and the latent class model (LCM) to estimate technical efficiency. The findings suggest that technological heterogeneity plays an important role in the crop sector, though it is traditionally assumed to employ homogenous technology. A comparison of standard SFA models that assumes the technology is common to all farms and LCM estimates highlights the way the efficiency of crop farms can be underestimated using traditional SFA models.
Resumo:
Regional climate models (RCMs) provide reliable climatic predictions for the next 90 years with high horizontal and temporal resolution. In the 21st century northward latitudinal and upward altitudinal shift of the distribution of plant species and phytogeographical units is expected. It is discussed how the modeling of phytogeographical unit can be reduced to modeling plant distributions. Predicted shift of the Moesz line is studied as case study (with three different modeling approaches) using 36 parameters of REMO regional climate data-set, ArcGIS geographic information software, and periods of 1961-1990 (reference period), 2011-2040, and 2041-2070. The disadvantages of this relatively simple climate envelope modeling (CEM) approach are then discussed and several ways of model improvement are suggested. Some statistical and artificial intelligence (AI) methods (logistic regression, cluster analysis and other clustering methods, decision tree, evolutionary algorithm, artificial neural network) are able to provide development of the model. Among them artificial neural networks (ANN) seems to be the most suitable algorithm for this purpose, which provides a black box method for distribution modeling.