3 resultados para Ground level
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A rich collection of Heteroptera extracted with Berlese funnel by Dr. I. Loksa between 1953–1974 in Hungary, has been examined. Altogether 157 true bug species have been identified. The great majority of them have been found in very low number, there are only 27 species of which more than 10 adult individuals have been found. Some species considered to be rare or very rare in Hungary have been collected in relatively great number (Ceratocombus coleoptratus, Cryptostemma pusillimum, C. waltli, Acalypta carinata, A. platycheila, Loricula ruficeps, Myrmedobia exilis). The three families, which are more or less rich in species and have the highest ratio of extracted species, were Rhyparochromidae, Tingidae and Nabidae. Out of them, the family Rhyparochromidae has been found to be most diverse and most characteristic at the ground-level. Individuals of the families Tingidae, Hebridae and Rhyparochromidae have been found in greatest number. The occurrence of the lace bug Campylosteira orientalis Horváth, 1881 in Hungary has been verified by a voucher specimen. In respect to the environmental changes through the country, parallel changes have been observed in the zoogeographical distribution of the ground-living bugs.
Resumo:
A rich material of Heteroptera extracted with Berlese funnels by Dr. I. Loksa between 1953–1974 in Hungary, has been examined. Altogether 157 true bug species have been identified. The ground-living heteropteran assemblages collected in different plant communities, substrata, phytogeographical provinces and seasons have been compared with multivariate methods. Because of the unequal number of samples, the objects have been standardized with stochastic simulation. There are several true bug species, which have been collected in almost all of the plant communities. However, characteristic ground-living heteropteran assemblages have been found in numerous Hungarian plant community types. Leaf litter and debris seem to have characteristic bug assemblages. Some differences have also been recognised between the bug fauna of mosses growing on different surfaces. Most of the species have been found in all of the great phytogeographical provinces of Hungary. Most high-dominance species, which have been collected, can be found at the ground-level almost throughout the year. Specimens of many other species have been collected with Berlese funnels in spring, autumn and/or winter. The diversities of the ground-living heteropteran assemblages of the examined objects have also been compared.
Resumo:
Several methods and indicators can be used to evaluate the coenological state of a given habitat, the ones which can be created simply, quickly, standardizably and reliably and which can be used to exactly quantify the state of a given habitat in point of numbers can be of outstanding practical importance in ecology. One possible method is the examination of the genera which can be found in a given habitat in great abundance and have little number of species and various ecological characteristics. For this purpose one of the most appropriate groups is that of ground-dwelling oribatid mites (Acari: Oribatida). In our research, joining the bioindication methodological project of the “Adaptation to Climate Change” Research Group of the Hungarian Academy of Sciences, the indication strength of genus-level taxon lists and the effects of the main pattern-generating factors creating similarity patterns were analysed with the help of data series on oribatid mites collected by us and originating from literature. Our aim was to develop a method with the help of which the difference expressed with distance functions between two oribatid mite genus lists originating from any sources can correspond to spatial and temporal scales. Our results prove that these genus lists are able to express the spatial distance of the habitats. With the help of this base of comparison changes in disturbed or transformed habitats can be expressed by means of oribatid mite communities, with spatial and temporal distances.