2 resultados para Graphic visual method
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Raster graphic ampelometric software was not exclusively developed for the estimation of leaf area, but also for the characterization of grapevine (Viti vinifera L.) leaves. The software was written in C-Hprogramming language, using the C-1-1- Builder 2007 for Windows 95-XP and Linux operation systems. It handles desktop-scanned images. On the image analysed with the GRA.LE.D., the user has to determine 11 points. These points are then connected and the distances between them calculated. The GRA.LE.D. software supports standard ampelometric measurements such as leaf area, angles between the veins and lengths of the veins. These measurements are recorded by the software and exported into plain ASCII text files for single or multiple samples. Twenty-two biometric data points of each leaf are identified by the GRA.LE.D. It presents the opportunity to statistically analyse experimental data, allows comparison of cultivars and enables graphic reconstruction of leaves using the Microsoft Excel Chart Wizard. The GRA. LE.D. was thoroughly calibrated and compared to other widely used instruments and methods such as photo-gravimetry, LiCor L0100, WinDIAS2.0 and ImageTool. By comparison, the GRA.LE.D. presented the most accurate measurements of leaf area, but the LiCor L0100 and the WinDIAS2.0 were faster, while the photo-gravimetric method proved to be the most time-consuming. The WinDIAS2.0 instrument was the least reliable. The GRA.LE.D. is uncomplicated, user-friendly, accurate, consistent, reliable and has wide practical application.
Resumo:
The article deals with the changing visual value of deciduous species. Due to climate change, the climatic patterns found on the plants’ growing area may change. Therefore, foliage of deciduous trees changes itscolor in the fall season witha different timing and intensity. This shift can modify the functional, ornamental and ecological value of these plants in the fall season, which is of special interest in the context of landscape design. However, this effect of climate change hasn’t been examined in terms of landscape architecture yet.In the article we are looking for deciduous species that can be appropriate subjectsforresearch, we are giving suggestions for choosing the right location for a future research and proposing available resources of satellite images, that can provide the basis for evaluation of leaf coloring. We also review already existing methods for calculating the degree of fall leaf coloring.We propose a novel method of satellite image processing to evaluate the coloring of a stand. Leaf Coloring Index (LCI) shows the leaf color’s relation to the color realms. LCI is appropriate for setting up a phenological model based onclimate data in a future research. Based on future climate models, the change of the examined stand’s visual value can be predicted. The results might affect the future use of plant species in landscape architecture.