3 resultados para Generalized Logistic Model
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The article attempts to answer the question whether or not the latest bankruptcy prediction techniques are more reliable than traditional mathematical–statistical ones in Hungary. Simulation experiments carried out on the database of the first Hungarian bankruptcy prediction model clearly prove that bankruptcy models built using artificial neural networks have higher classification accuracy than models created in the 1990s based on discriminant analysis and logistic regression analysis. The article presents the main results, analyses the reasons for the differences and presents constructive proposals concerning the further development of Hungarian bankruptcy prediction.
Resumo:
Az intertemporális döntések fontos szerepet játszanak a közgazdasági modellezésben, és azt írják le, hogy milyen átváltást alkalmazunk két különböző időpont között. A közgazdasági modellezésben az exponenciális diszkontálás a legelterjedtebb, annak ellenére, hogy az empirikus vizsgálatok alapján gyenge a magyarázó ereje. A gazdaságpszichológiában elterjedt általánosított hiperbolikus diszkontálás viszont nagyon nehezen alkalmazható közgazdasági modellezési célra. Így tudott gyorsan elterjedni a kvázi-hiperbolikus diszkontálási modell, amelyik úgy ragadja meg a főbb pszichológiai jelenségeket, hogy kezelhető marad a modellezés során. A cikkben azt állítjuk, hogy hibás az a megközelítés, hogy hosszú távú döntések esetén, főleg sorozatok esetén helyettesíthető a két hiperbolikus diszkontálás egymással. Így a hosszú távú kérdéseknél érdemes felülvizsgálni a kvázi-hiperbolikus diszkontálással kapott eredményeket, ha azok az általánosított hiperbolikus diszkontálási modellel való helyettesíthetőséget feltételezték. ____ Intertemporal choice is one of the crucial questions in economic modeling and it describes decisions which require trade-offs among outcomes occurring in different points in time. In economic modeling the exponential discounting is the most well known, however it has weak validity in empirical studies. Although according to psychologists generalized hyperbolic discounting has the strongest descriptive validity it is very complex and hard to use in economic models. In response to this challenge quasi-hyperbolic discounting was proposed. It has the most important properties of generalized hyperbolic discounting while tractability remains in analytical modeling. Therefore it is common to substitute generalized hyperbolic discounting with quasi-hyperbolic discounting. This paper argues that the substitution of these two models leads to different conclusions in long term decisions especially in the case of series; hence all the models that use quasi-hyperbolic discounting for long term decisions should be revised if they states that generalized hyperbolic discounting model would have the same conclusion.
Resumo:
Setting out from the database of Operophtera brumata, L. in between 1973 and 2000 due to the Light Trap Network in Hungary, we introduce a simple theta-logistic population dynamical model based on endogenous and exogenous factors, only. We create an indicator set from which we can choose some elements with which we can improve the fitting results the most effectively. Than we extend the basic simple model with additive climatic factors. The parameter optimization is based on the minimized root mean square error. The best model is chosen according to the Akaike Information Criterion. Finally we run the calibrated extended model with daily outputs of the regional climate model RegCM3.1, regarding 1961-1990 as reference period and 2021-2050 with 2071-2100 as future predictions. The results of the three time intervals are fitted with Beta distributions and compared statistically. The expected changes are discussed.