4 resultados para Fourth-order methods
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Rationing occurs if the demand for a certain good exceeds its supply. In such situations a rationing method has to be specified in order to determine the allocation of the scarce good to the agents. Moulin (1999) introduced the notion of probabilistic rationing methods for the discrete framework. In this paper we establish a link between classical and probabilistic rationing methods. In particular, we assign to any given classical rationing method a probabilistic rationing method with minimal variance among those probabilistic rationing methods, which result in the same expected distributions as the given classical rationing method.
Resumo:
In finance risk capital allocation raises important questions both from theoretical and practical points of view. How to share risk of a portfolio among its subportfolios? How to reserve capital in order to hedge existing risk and how to assign this to different business units? We use an axiomatic approach to examine risk capital allocation, that is we call for fundamental properties of the methods. Our starting point is Csóka and Pintér (2011) who show by generalizing Young (1985)'s axiomatization of the Shapley value that the requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity are irreconcilable given that risk is quantified by a coherent measure of risk. In this paper we look at these requirements using analytic and simulations tools. We examine allocation methods used in practice and also ones which are theoretically interesting. Our main result is that the problem raised by Csóka and Pintér (2011) is indeed relevant in practical applications, that is it is not only a theoretical problem. We also believe that through the characterizations of the examined methods our paper can serve as a useful guide for practitioners.
Resumo:
A special class of preferences, given by a directed acyclic graph, is considered. They are represented by incomplete pairwise comparison matrices as only partial information is available: for some pairs no comparison is given in the graph. A weighting method satisfies the property linear order preservation if it always results in a ranking such that an alternative directly preferred to another does not have a lower rank. We study whether two procedures, the Eigenvector Method and the Logarithmic Least Squares Method meet this axiom. Both weighting methods break linear order preservation, moreover, the ranking according to the Eigenvector Method depends on the incomplete pairwise comparison representation chosen.
Resumo:
A minőségügy egyik kulcsfeladata, hogy azonosítsa az értékteremtés szempontjából kritikus tényezőket, meghatározza ezek értékét, valamint intézkedjen negatív hatásuk megelőzése és csökkentése érdekében. Az értékteremtés sok esetben folyamatokon keresztül történik, amelyek tevékenységekből, elvégzendő feladatokból állnak. Ezekhez megfelelő munkatársak kellenek, akiknek az egyik legfontosabb jellemzője az általuk birtokolt tudás. Mindezek alapján a feladat-tudás-erőforrás kapcsolatrendszer ismerete és kezelése minőségügyi feladat is. A komplex rendszerek elemzésével foglalkozó hálózatkutatás eszközt biztosíthat ehhez, ezért indokolt a minőségügyi területen történő alkalmazhatóságának vizsgálata. Az alkalmazási lehetőségek rendszerezése érdekében a szerzők kategorizálták a minőségügyi hálózatokat az élek (kapcsolatok) és a csúcsok (hálózati pontok) típusai alapján. Ezt követően definiálták a multimodális (több különböző csúcstípusból álló) tudáshálózatot, amely a feladatokból, az erőforrásokból, a tudáselemekből és a közöttük lévő kapcsolatokból épül fel. A hálózat segítségével kategóriákba sorolták a tudáselemeket, valamint a fokszámok alapján meghatározták értéküket. A multimodális hálózatból képzett tudáselem-hálózatban megadták az összefüggő csoportok jelentését, majd megfogalmaztak egy összefüggést a tudáselem-elvesztés kockázatának meghatározására. _______ The aims of quality management are to identify those factors that have significant influence on value production, qualify or quantify them, and make preventive and corrective actions in order to reduce their negative effects. The core elements of value production are processes and tasks, along with workforce having the necessary knowledge to work. For that reason the task-resource-knowledge structure is pertinent to quality management. Network science provides methods to analyze complex systems; therefore it seems reasonable to study the use of tools of network analysis in association with quality management issues. First of all the authors categorized quality networks according to the types of nodes (vertices) and links (edges or arcs). Focusing on knowledge management, they defined the multimodal knowledge network, consisting of tasks, resources, knowledge items and their interconnections. Based on their degree, network nodes can be categorized and their value can be quantified. Derived from the multimodal network knowledge-item network is to be created, where the meaning of cohesive subgroups is defined. Eventually they proposed a formula for determining the risk of knowledge loss.