4 resultados para Extensive Bloom
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A correlation scheme (leading to a special equilibrium called “soft” correlated equilibrium) is applied for two-person finite games in extensive form with perfect information. Randomization by an umpire takes place over the leaves of the game tree. At every decision point players have the choice either to follow the recommendation of the umpire blindly or freely choose any other action except the one suggested. This scheme can lead to Pareto-improved outcomes of other correlated equilibria. Computational issues of maximizing a linear function over the set of soft correlated equilibria are considered and a linear-time algorithm in terms of the number of edges in the game tree is given for a special procedure called “subgame perfect optimization”.
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.