4 resultados para Eigenvalue of a graph
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
We consider the problem of axiomatizing the Shapley value on the class of assignment games. We first show that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games by providing alternative solutions that satisfy these axioms. However, when considering an assignment game as a communication graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph buyers are connected with sellers only, we show that Myerson's component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.
Resumo:
An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper.
Resumo:
Pairwise comparison matrices are often used in Multi-attribute Decision Making forweighting the attributes or for the evaluation of the alternatives with respect to a criteria. Matrices provided by the decision makers are rarely consistent and it is important to index the degree of inconsistency. In the paper, the minimal number of matrix elements by the modification of which the pairwise comparison matrix can be made consistent is examined. From practical point of view, the modification of 1, 2, or, for larger matrices, 3 elements seems to be relevant. These cases are characterized by using the graph representation of the matrices. Empirical examples illustrate that pairwise comparison matrices that can be made consistent by the modification of a few elements are present in the applications.
Resumo:
Network analysis has emerged as a key technique in communication studies, economics, geography, history and sociology, among others. A fundamental issue is how to identify key nodes in a network, for which purpose a number of centrality measures have been developed. This paper proposes a new parametric family of centrality measures called generalized degree. It is based on the idea that a relationship to a more interconnected node contributes to centrality in a greater extent than a connection to a less central one. Generalized degree improves on degree by redistributing its sum over the network with the consideration of the global structure. Application of the measure is supported by a set of basic properties. A sufficient condition is given for generalized degree to be rank monotonic, excluding counter-intuitive changes in the centrality ranking after certain modifications of the network. The measure has a graph interpretation and can be calculated iteratively. Generalized degree is recommended to apply besides degree since it preserves most favorable attributes of degree, but better reflects the role of the nodes in the network and has an increased ability to distinguish between their importance.