3 resultados para Dynamics Simulation

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ecological models have often been used in order to answer questions that are in the limelight of recent researches such as the possible effects of climate change. The methodology of tactical models is a very useful tool comparison to those complex models requiring relatively large set of input parameters. In this study, a theoretical strategic model (TEGM ) was adapted to the field data on the basis of a 24-year long monitoring database of phytoplankton in the Danube River at the station of G¨od, Hungary (at 1669 river kilometer – hereafter referred to as “rkm”). The Danubian Phytoplankton Growth Model (DPGM) is able to describe the seasonal dynamics of phytoplankton biomass (mg L−1) based on daily temperature, but takes the availability of light into consideration as well. In order to improve fitting, the 24-year long database was split in two parts in accordance with environmental sustainability. The period of 1979–1990 has a higher level of nutrient excess compared with that of the 1991–2002. The authors assume that, in the above-mentioned periods, phytoplankton responded to temperature in two different ways, thus two submodels were developed, DPGM-sA and DPGMsB. Observed and simulated data correlated quite well. Findings suggest that linear temperature rise brings drastic change to phytoplankton only in case of high nutrient load and it is mostly realized through the increase of yearly total biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2002, 2003 and 2004, we took macoinvertebrate samples on a total of 36 occasions at the Badacsony bay of Lake Balaton. Our sampling site was characterised by areas of open water (in 2003 and 2004 full of reed-grass) as well as by areas covered by common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia). Samples were taken both from water body and benthic ooze by use of a stiff hand net. We have gained our data from processing 208 individual samples. We took samples frequently from early spring until late autumn for a deeper understanding of the processes of seasonal dynamics. The main seasonal patterns and temporal changes of diversity were described. We constructed a weather-dependent simulation model of the processes of seasonal dynamics in the interest of a possible further utilization of our data in climate change research. We described the total number of individuals, biovolume and diversity of all macroinvertebrate species with a single index and used the temporal trends of this index for simulation modelling. Our discrete deterministic model includes only the impact of temperature, other interactions might only appear concealed. Running the model for different climate change scenarios it became possible to estimate conditions for the 2070-2100 period. The results, however, should be treated very prudently not only because our model is very simple but also because the scenarios are the results of different models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is one of the most crucial ecological problems of our age with great influence. Seasonal dynamics of aquatic communities are — among others — regulated by the climate, especially by temperature. In this case study we attempted the simulation modelling of the seasonal dynamics of a copepod species, Cyclops vicinus, which ranks among the zooplankton community, based on a quantitative database containing ten years of data from the Danube’s Göd area. We set up a simulation model predicting the abundance of Cyclops vicinus by considering only temperature as it affects the abundance of population. The model was adapted to eight years of daily temperature data observed between 1981 and 1994 and was tested successfully with the additional data of two further years. The model was run with the data series of climate change scenarios specified for the period around 2070- 2100. On the other hand we looked for the geographically analogous areas with the Göd region which are mostly similar to the future climate of the Göd area. By means of the above-mentioned points we can get a view how the climate of the region will change by the end of the 21st century, and the way the seasonal dynamics of a chosen planktonic crustacean species may follow this change. According to our results the area of Göd will be similar to the northern region of Greece. The maximum abundance of the examined species occurs a month to one and a half months earlier, moreover larger variances are expected between years in respect of the abundance. The deviations are expected in the direction of smaller or significantly larger abundance not observed earlier.