6 resultados para DECIDUOUS DENTITION
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The article deals with the changing visual value of deciduous species. Due to climate change, the climatic patterns found on the plants’ growing area may change. Therefore, foliage of deciduous trees changes itscolor in the fall season witha different timing and intensity. This shift can modify the functional, ornamental and ecological value of these plants in the fall season, which is of special interest in the context of landscape design. However, this effect of climate change hasn’t been examined in terms of landscape architecture yet.In the article we are looking for deciduous species that can be appropriate subjectsforresearch, we are giving suggestions for choosing the right location for a future research and proposing available resources of satellite images, that can provide the basis for evaluation of leaf coloring. We also review already existing methods for calculating the degree of fall leaf coloring.We propose a novel method of satellite image processing to evaluate the coloring of a stand. Leaf Coloring Index (LCI) shows the leaf color’s relation to the color realms. LCI is appropriate for setting up a phenological model based onclimate data in a future research. Based on future climate models, the change of the examined stand’s visual value can be predicted. The results might affect the future use of plant species in landscape architecture.
Resumo:
Oribatid mites are one of the most abundant groups of the ground-dwelling mesofauna. They can be found in almost every terrestrial habitat all over the world and they are characterized by great species richness and great number of individuals. In spite of that not enough is known about their behaviour on community level and their spatial and temporal pattern in different habitats of the world. In our present study the seasonal behaviour of oribatid mite communities was analysed in three types of microhabitats in a temperate deciduous forest: in leaf litter, soil and moss. Samples were collected at a given site in a year and a half and the oribatid mite communities living there were studied on genus level along with the changes of meteorological factors characteristic of the area. The results show that corresponding to similar previous researches, the communities in our study do not have a seasonally changing, returning pattern either. Based on this, we can conclude that climatic differences and differences in other seasonally changing factors between the seasons do not have a significant role in the annual change of communities. Besides that we discovered that the communities of the three microhabitats are not completely the same. It is the oribatid mite community of the moss which differs mostly from communities in the leaf litter and in the soil. Our study calls attention among others to the fact that compositional changes of the oribatid mite communities living all over the world and their causes are unclear to date.
Resumo:
Global average temperature has increased and precipitation pattern has altered over the past 100 years due to increases in greenhouse gases. These changes will alter numerous site factors and biochemical processes of vegetative communities such as nutrient and water availability, permafrost thawing, fire regime, biotic interactions and invasion. As a consequence, climate change is expected to alter distribution ranges of many species and communities as well as boundaries of biomes. Shifting of species and vegetation zones northwards and upwards in elevation has already been observed. Besides, several experiments have been conducted and simulations have been run all over the world in order to predict possible range shifts and ecological risks. In this paper, we review literature available in Web of Science on Europe and boreal Eurasia and give an overview of observed and predicted changes in vegetation in these regions. The main trends include advance of the tree line, reduction of the alpine vegetation belt, drought risk, forest diebacks, a shift from coniferous forests to deciduous forests and invasion. It is still controversial if species migration will be able to keep pace with climate change.
Resumo:
Stylization is a method of ornamental plant use usually applied in urban open space and garden design based on aesthetic consideration. Stylization can be seen as a nature-imitating ornamental plant application which evokes the scenery rather than an ecological plant application which assists the processes and functions observed in the nature. From a different point of view, stylization of natural or semi-natural habitats can sometimes serve as a method for preserving the physiognomy of the plant associations that may be affected by the climate change of the 21st century. The vulnerability of the Hungarian habitats has thus far been examined by the researchers only from the botanical point of view but not in terms of its landscape design value. In Hungary coniferous forests are edaphic and classified on this basis. The General National Habitat Classification System (Á-NÉR) distinguishes calcareous Scots pine forests and acidofrequent coniferous forests. The latter seems to be highly sensitive to climate change according to ecological models. The physiognomy and species pool of its subtypes are strongly determined by the dominant coniferous species that can be Norway spruce (Picea abies) or Scots pine (Pinus sylvestris). We are going to discuss the methodology of stylization of climate sensitive habitats and briefly refer to acidofrequent coniferous forests as a case study. In the course of stylization those coniferous and deciduous tree species of the studied habitat that are water demanding should be substituted by drought tolerant ones with similar characteristics. A list of the proposed taxa is going to be given.
Resumo:
Stylization is a common method of ornamental plant use that imitates nature and evokes the scenery. This paper discloses a not yet proposed aspect of stylization, since the method offers the possibility of preserving the physiognomy of those habitats that seem to vanish due to future climate change. In addition, novelty of the method is founded also on that vulnerability of the Hungarian habitats has been examined by the researchers only from the botanical and ecological point of view so far and not in terms of its landscape design value. In Hungary, acidofrequent mixed forests appear to be highly sensitive to climate change according to ecological models. We are going to discuss the methodology of stylization of climate sensitive habitats and briefly refer to acidofrequent mixed forests as a case study. Those coniferous and deciduous tree species of the studied habitat that are water demanding are proposed to be substituted by drought tolerant ones with similar characteristics, and an optionally expandable list of these taxa is presented. Based on this the authors suggest experimental investigations of those of the proposed taxa for which the higher drought tolerance is based on observations only.