5 resultados para Corporate and social and environmental accounting practices
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.
Resumo:
The aim of this article is to draw attention to calculations on the environmental effects of agriculture and to the definition of marginal agricultural yield. When calculating the environmental impacts of agricultural activities, the real environmental load generated by agriculture is not revealed properly through ecological footprint indicators, as the type of agricultural farming (thus the nature of the pollution it creates) is not incorporated in the calculation. It is commonly known that extensive farming uses relatively small amounts of labor and capital. It produces a lower yield per unit of land and thus requires more land than intensive farming practices to produce similar yields, so it has a larger crop and grazing footprint. However, intensive farms, to achieve higher yields, apply fertilizers, insecticides, herbicides, etc., and cultivation and harvesting are often mechanized. In this study, the focus is on highlighting the differences in the environmental impacts of extensive and intensive farming practices through a statistical analysis of the factors determining agricultural yield. A marginal function is constructed for the relation between chemical fertilizer use and yield per unit fertilizer input. Furthermore, a proposal is presented for how calculation of the yield factor could possibly be improved. The yield factor used in the calculation of biocapacity is not the marginal yield for a given area, but is calculated from the real and actual yields, and this way biocapacity and the ecological footprint for cropland are equivalent. Calculations for cropland biocapacity do not show the area needed for sustainable production, but rather the actual land area used for agricultural production. The proposal the authors present is a modification of the yield factor and also the changed biocapacity is calculated. The results of statistical analyses reveal the need for a clarification of the methodology for calculating marginal yield, which could clearly contribute to assessing the real environmental impacts of agriculture.
Resumo:
In recent years there has been growing concern about the emission trade balances of countries. This is due to the fact that countries with an open economy are active players in international trade. Trade is not only a major factor in forging a country’s economic structure, but contributes to the movement of embodied emissions beyond country borders. This issue is especially relevant from the carbon accounting policy and domestic production perspective, as it is known that the production-based principle is employed in the Kyoto agreement. The research described herein was designed to reveal the interdependence of countries on international trade and the corresponding embodied emissions both on national and on sectoral level and to illustrate the significance of the consumption-based emission accounting. It is presented here to what extent a consumption-based accounting would change the present system based on production-based accounting and allocation. The relationship of CO2 emission embodied in exports and embodied in imports is analysed here. International trade can blur the responsibility for the ecological effects of production and consumption and it can lengthen the link between consumption and its consequences. Input-output models are used in the methodology as they provide an appropriate framework for climate change accounting. The analysis comprises an international comparative study of four European countries (Germany, the United Kingdom, the Netherlands, and Hungary) with extended trading activities and carbon emissions. Moving from a production-based approach in climate policy to a consumption-based principle and allocation approach would help to increase the efficiency of emission reductions and would force countries to rethink their trading activities in order to decrease the environmental load of production activities. The results of this study show that it is important to distinguish between the two emission accounting approaches, both on the global and the local level.
Resumo:
Egyre többen ismerik fel, hogy az élelmiszer-fogyasztás egészségügyi és környezeti hatása is jelentős. A különböző életstílusú társadalmi csoportok fogyasztási szerkezete eltérő lehet. Jelen tanulmány ezerfős, országos reprezentatív minta alapján vizsgálja az élelmiszer-fogyasztási szerkezet eltéréseit a nemek és különböző iskolázottságú fogyasztók körében. Jellemző fogyasztási klasztereket tár fel a fogyasztás szerkezete alapján. A fogyasztás szerkezeti és mennyiségi értékein túlmenően az ökológiai lábnyom indikátorával a fogyasztás környezetterhelését is számszerűsíti. _____ Concern about both health and environmental impacts of food consumption is increasing. Social groups with various lifestyles can have different food consumption structure. The present study analyses the differences in the food consumption structure among genders and educational groups based on a national, representative survey of 1000 adults. Food consumption clusters are identified based on food consumption structure. Beyond the analysis of food consumption and its structure, its environmental impact is quantified by the ecological footprint indicator.