2 resultados para Constraints of monotonicity
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A cikk a páros összehasonlításokon alapuló pontozási eljárásokat tárgyalja axiomatikus megközelítésben. A szakirodalomban számos értékelő függvényt javasoltak erre a célra, néhány karakterizációs eredmény is ismert. Ennek ellenére a megfelelő módszer kiválasztása nem egy-szerű feladat, a különböző tulajdonságok bevezetése elsősorban ebben nyújthat segítséget. Itt az összehasonlított objektumok teljesítményén érvényesülő monotonitást tárgyaljuk az önkonzisztencia és önkonzisztens monotonitás axiómákból kiindulva. Bemutatásra kerülnek lehetséges gyengítéseik és kiterjesztéseik, illetve egy, az irreleváns összehasonlításoktól való függetlenséggel kapcsolatos lehetetlenségi tétel is. A tulajdonságok teljesülését három eljárásra, a klasszikus pontszám eljárásra, az ezt továbbfejlesztő általánosított sorösszegre és a legkisebb négyzetek módszerére vizsgáljuk meg, melyek mindegyike egy lineáris egyenletrendszer megoldásaként számítható. A kapott eredmények új szempontokkal gazdagítják a pontozási eljárás megválasztásának kérdését. _____ The paper provides an axiomatic analysis of some scoring procedures based on paired comparisons. Several methods have been proposed for these generalized tournaments, some of them have been also characterized by a set of properties. The choice of an appropriate method is supported by a discussion of their theoretical properties. In the paper we focus on the connections of self-consistency and self-consistent-monotonicity, two axioms based on the comparisons of object's performance. The contradiction of self-consistency and independence of irrel-evant matches is revealed, as well as some possible reductions and extensions of these properties. Their satisfiability is examined through three scoring procedures, the score, generalised row sum and least squares methods, each of them is calculated as a solution of a system of linear equations. Our results contribute to the problem of finding a proper paired comparison based scoring method.
Resumo:
In finance risk capital allocation raises important questions both from theoretical and practical points of view. How to share risk of a portfolio among its subportfolios? How to reserve capital in order to hedge existing risk and how to assign this to different business units? We use an axiomatic approach to examine risk capital allocation, that is we call for fundamental properties of the methods. Our starting point is Csóka and Pintér (2011) who show by generalizing Young (1985)'s axiomatization of the Shapley value that the requirements of Core Compatibility, Equal Treatment Property and Strong Monotonicity are irreconcilable given that risk is quantified by a coherent measure of risk. In this paper we look at these requirements using analytic and simulations tools. We examine allocation methods used in practice and also ones which are theoretically interesting. Our main result is that the problem raised by Csóka and Pintér (2011) is indeed relevant in practical applications, that is it is not only a theoretical problem. We also believe that through the characterizations of the examined methods our paper can serve as a useful guide for practitioners.