3 resultados para Computer Modelling

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of discrete districting problems with geographical constraints, we demonstrate that determining an (ex post) unbiased districting, which requires that the number of representatives of a party should be proportional to its share of votes, turns out to be a computationally intractable (NP-complete) problem. This raises doubts as to whether an independent jury will be able to come up with a “fair” redistricting plan in case of a large population, that is, there is no guarantee for finding an unbiased districting (even if such exists). We also show that, in the absence of geographical constraints, an unbiased districting can be implemented by a simple alternating-move game among the two parties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distance-based inconsistency indicator, defined by the third author for the consistency-driven pairwise comparisons method, is extended to the incomplete case. The corresponding optimization problem is transformed into an equivalent linear programming problem. The results can be applied in the process of filling in the matrix as the decision maker gets automatic feedback. As soon as a serious error occurs among the matrix elements, even due to a misprint, a significant increase in the inconsistency index is reported. The high inconsistency may be alarmed not only at the end of the process of filling in the matrix but also during the completion process. Numerical examples are also provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper.