9 resultados para Climatic data simulation
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
The impact of climate change on the potential distribution of four Mediterranean pine species – Pinus brutia Ten., Pinus halepensis Mill., Pinus pinaster Aiton, and Pinus pinea L. – was studied by the Climate Envelope Model (CEM) to examine whether these species are suitable for the use as ornamental plants without frost protection in the Carpathian Basin. The model was supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The climate data were available in a 25 km resolution grid for the reference period (1961–1990) and two future periods (2011–2040, 2041–2070). The regional climate model was based on the IPCC SRES A1B scenario. While the potential distribution of P. brutia was not predicted to expand remarkably, an explicit shift of the distribution of the other three species was shown. Northwestern African distribution segments seem to become abandoned in the future. Current distribution of P. brutia may be highly endangered by the climate change. P. halepensis in the southern part and P. pinaster in the western part of the Carpathian Basin may find suitable climatic conditions in the period of 2041–2070.
Resumo:
The potential future distribution of four Mediterranean pines was aimed to be modeled supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The studied species were Pinus brutia, Pinus halepensis, Pinus pinaster, and Pinus pinea. The climate data were available in a 25 km resolution grid for the reference period (1961-90) and two future periods (2011-40, 2041-70). The climate model was based on the IPCC SRES A1B scenario. The model results show explicit shift of the distributions to the north in case of three of the four studied species. The future (2041-70) climate of Western Hungary seems to be suitable for Pinus pinaster.
Resumo:
Background & Objective: The most northern populations of two sand fly species (Phlebotomus mascittii and Phlebotomus neclectus) in the Carpathian Basin are known from Central Hungary. The most important limiting factor of the distribution of Phlebotomus species in the region is the annual minimum temperature which may be positively affected by the urban heat island and the climate change in the future. Method: Based on the latest case reports of the species, Climate Envelope Model was done for the period 1961-1990 and 2025-2050 to project the potential urban distribution of the species. The climatic data were obtained from RegCM regional climate model and MODIS satellite images. Results: The recent occurrence of the species in Central Hungary indicates that Phlebotomus species can overwinter in non-heated shelters in the built environment. Interpretation & Conclusion: Jointly heat island and future climate change seem to be able to provide suitable environment for the studied species in urban areas in a great extent.
Resumo:
Our aim was to approach an important and well-investigable phenomenon – connected to a relatively simple but real field situation – in such a way, that the results of field observations could be directly comparable with the predictions of a simulation model-system which uses a simple mathematical apparatus and to simultaneously gain such a hypothesis-system, which creates the theoretical opportunity for a later experimental series of studies. As a phenomenon of the study, we chose the seasonal coenological changes of aquatic and semiaquatic Heteroptera community. Based on the observed data, we developed such an ecological model-system, which is suitable for generating realistic patterns highly resembling to the observed temporal patterns, and by the help of which predictions can be given to alternative situations of climatic circumstances not experienced before (e.g. climate changes), and furthermore; which can simulate experimental circumstances. The stable coenological state-plane, which was constructed based on the principle of indirect ordination is suitable for unified handling of data series of monitoring and simulation, and also fits for their comparison. On the state-plane, such deviations of empirical and model-generated data can be observed and analysed, which could otherwise remain hidden.
Resumo:
In the years 2004 and 2005 we collected samples of phytoplankton, zooplankton and macroinvertebrates in an artificial small pond in Budapest. We set up a simulation model predicting the abundance of the cyclopoids, Eudiaptomus zachariasi and Ischnura pumilio by considering only temperature as it affects the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature, but the abundance of the three mentioned groups. This discrete-deterministic model could generate similar patterns like the observed one and testing it on historical data was successful. However, because the model was overpredicting the abundances of Ischnura pumilio and Cyclopoida at the end of the year, these results were not considered. Running the model with the data series of climate change scenarios, we had an opportunity to predict the individual numbers for the period around 2050. If the model is run with the data series of the two scenarios UKHI and UKLO, which predict drastic global warming, then we can observe a decrease in abundance and shift in the date of the maximum abundance occurring (excluding Ischnura pumilio, where the maximum abundance increases and it occurs later), whereas under unchanged climatic conditions (BASE scenario) the change in abundance is negligible. According to the scenarios GFDL 2535, GFDL 5564 and UKTR, a transition could be noticed.
Resumo:
Knowledge on the expected effects of climate change on aquatic ecosystems is defined by three ways. On the one hand, long-term observation in the field serves as a basis for the possible changes; on the other hand, the experimental approach may bring valuable pieces of information to the research field. The expected effects of climate change cannot be studied by empirical approach; rather mathematical models are useful tools for this purpose. Within this study, the main findings of field observations and their implications for future were summarized; moreover, the modelling approaches were discussed in a more detailed way. Some models try to describe the variation of physical parameters in a given aquatic habitat, thus our knowledge on their biota is confined to the findings based on our present observations. Others are destined for answering special issues related to the given water body. Complex ecosystem models are the keys of our better understanding of the possible effects of climate change. Basically, these models were not created for testing the influence of global warming, rather focused on the description of a complex system (e. g. a lake) involving environmental variables, nutrients. However, such models are capable of studying climatic changes as well by taking into consideration a large set of environmental variables. Mostly, the outputs are consistent with the assumptions based on the findings in the field. Since synthetized models are rather difficult to handle and require quite large series of data, the authors proposed a more simple modelling approach, which is capable of examining the effects of global warming. This approach includes weather dependent simulation modelling of the seasonal dynamics of aquatic organisms within a simplified framework.
Resumo:
A rich material of Heteroptera extracted with Berlese funnels by Dr. I. Loksa between 1953–1974 in Hungary, has been examined. Altogether 157 true bug species have been identified. The ground-living heteropteran assemblages collected in different plant communities, substrata, phytogeographical provinces and seasons have been compared with multivariate methods. Because of the unequal number of samples, the objects have been standardized with stochastic simulation. There are several true bug species, which have been collected in almost all of the plant communities. However, characteristic ground-living heteropteran assemblages have been found in numerous Hungarian plant community types. Leaf litter and debris seem to have characteristic bug assemblages. Some differences have also been recognised between the bug fauna of mosses growing on different surfaces. Most of the species have been found in all of the great phytogeographical provinces of Hungary. Most high-dominance species, which have been collected, can be found at the ground-level almost throughout the year. Specimens of many other species have been collected with Berlese funnels in spring, autumn and/or winter. The diversities of the ground-living heteropteran assemblages of the examined objects have also been compared.
Resumo:
Nowadays, the scientific and social significance of the research of climatic effects has become outstanding. In order to be able to predict the ecological effects of the global climate change, it is necessary to study monitoring databases of the past and explore connections. For the case study mentioned in the title, historical weather data series from the Hungarian Meteorological Service and Szaniszló Priszter’s monitoring data on the phenology of geophytes have been used. These data describe on which days the observed geophytes budded, were blooming and withered. In our research we have found that the classification of the observed years according to phenological events and the classification of those according to the frequency distribution of meteorological parameters show similar patterns, and the one variable group is suitable for explaining the pattern shown by the other one. Furthermore, our important result is that the dates of all three observed phenophases correlate significantly with the average of the daily temperature fluctuation in the given period. The second most often significant parameter is the number of frosty days, this also seem to be determinant for all phenophases. Usual approaches based on the temperature sum and the average temperature don’t seem to be really important in this respect. According to the results of the research, it has turned out that the phenology of geophytes can be well modelled with the linear combination of suitable meteorological parameters
Resumo:
Ecological models have often been used in order to answer questions that are in the limelight of recent researches such as the possible effects of climate change. The methodology of tactical models is a very useful tool comparison to those complex models requiring relatively large set of input parameters. In this study, a theoretical strategic model (TEGM ) was adapted to the field data on the basis of a 24-year long monitoring database of phytoplankton in the Danube River at the station of G¨od, Hungary (at 1669 river kilometer – hereafter referred to as “rkm”). The Danubian Phytoplankton Growth Model (DPGM) is able to describe the seasonal dynamics of phytoplankton biomass (mg L−1) based on daily temperature, but takes the availability of light into consideration as well. In order to improve fitting, the 24-year long database was split in two parts in accordance with environmental sustainability. The period of 1979–1990 has a higher level of nutrient excess compared with that of the 1991–2002. The authors assume that, in the above-mentioned periods, phytoplankton responded to temperature in two different ways, thus two submodels were developed, DPGM-sA and DPGMsB. Observed and simulated data correlated quite well. Findings suggest that linear temperature rise brings drastic change to phytoplankton only in case of high nutrient load and it is mostly realized through the increase of yearly total biomass.