2 resultados para Biotic interactions

em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper five different models, as five modules of a complex agro-ecosystem are investigated. The water and nutrient flow in soil is simulated by the nutrient-in-soil model while the biomass change according to the seasonal weather aspects, the nutrient content of soil and the biotic interactions amongst the other terms of the food web are simulated by the food web population dynamical model that is constructed for a piece of homogeneous field. The food web model is based on the nutrient-in-soil model and on the activity function evaluator model that expresses the effect of temperature. The numbers of individuals in all phenological phases of the different populations are given by the phenology model. The food web model is extended to an inhomogeneous piece of field by the spatial extension model. Finally, as an additional module, an application of the above models for multivariate state-planes, is given. The modules built into the system are closely connected to each other as they utilize each other’s outputs, nevertheless, they work separately, too. Some case studies are analysed and a summarized outlook is given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global average temperature has increased and precipitation pattern has altered over the past 100 years due to increases in greenhouse gases. These changes will alter numerous site factors and biochemical processes of vegetative communities such as nutrient and water availability, permafrost thawing, fire regime, biotic interactions and invasion. As a consequence, climate change is expected to alter distribution ranges of many species and communities as well as boundaries of biomes. Shifting of species and vegetation zones northwards and upwards in elevation has already been observed. Besides, several experiments have been conducted and simulations have been run all over the world in order to predict possible range shifts and ecological risks. In this paper, we review literature available in Web of Science on Europe and boreal Eurasia and give an overview of observed and predicted changes in vegetation in these regions. The main trends include advance of the tree line, reduction of the alpine vegetation belt, drought risk, forest diebacks, a shift from coniferous forests to deciduous forests and invasion. It is still controversial if species migration will be able to keep pace with climate change.