2 resultados para Bayesian Latent Class
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A cikkben paneladatok segítségével a magyar gabonatermesztő üzemek 2001 és 2009 közötti technikai hatékonyságát vizsgáljuk. A technikai hatékonyság szintjének becslésére egy hagyományos sztochasztikus határok modell (SFA) mellett a látens csoportok modelljét (LCM) használjuk, amely figyelembe veszi a technológiai különbségeket is. Eredményeink arra utalnak, hogy a technológiai heterogenitás fontos lehet egy olyan ágazatban is, mint a szántóföldi növénytermesztés, ahol viszonylag homogén technológiát alkalmaznak. A hagyományos, azonos technológiát feltételező és a látens osztályok modelljeinek összehasonlítása azt mutatja, hogy a gabonatermesztő üzemek technikai hatékonyságát a hagyományos modellek alábecsülhetik. _____ The article sets out to analyse the technical efficiency of Hungarian crop farms between 2001 and 2009, using panel data and employing both standard stochastic frontier analysis and the latent class model (LCM) to estimate technical efficiency. The findings suggest that technological heterogeneity plays an important role in the crop sector, though it is traditionally assumed to employ homogenous technology. A comparison of standard SFA models that assumes the technology is common to all farms and LCM estimates highlights the way the efficiency of crop farms can be underestimated using traditional SFA models.
Resumo:
A kockázat statisztikai értelemben közvetlenül nem mérhető, azaz látens fogalom éppen úgy, mint a gazdasági fejlettség, a szervezettség vagy az intelligencia. Mi bennünk a közös? A kockázat is komplex fogalom, több mérhető tényezőt foglal magában, és bár sok tényezőjét mérjük, fel sem tételezzük, hogy pontos eredményt kapunk. Ebben a megközelítésben az elemző kezdettől fogva tudja, hogy hiányos az ismerete. Ezt Bélyácz [2011[ nyomán úgy is megfogalmazhatjuk: „A statisztikusok tudják, hogy valamit éppen nem tudnak.” / === / From statistical point of view risk, like economic development is a latent concept. Typically there is no one number which can explicitly estimate or project risk. Variance is used as a proxy in finance to measure risk. Other professions are using other concepts for risk. Underwriting is the most important step in insurance business to analyse exposure. Actuaries evaluate average claim size and the probability of claim to calculate risk. Bayesian credibility can be used to calculate insurance premium combining frequencies and empirical knowledge, as a prior. Different types of risks can be classified into a risk matrix to separate insurable risk. Only this category can be analysed by multivariate statistical methods, which are based on statistical data. Sample size and frequency of events are relevant not only in insurance, but in pension and investment decisions as well.