2 resultados para Agrobacterium tumefaciens
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
Grapevine stem segments were cocultivated with three different Agrobacterium tumefaciens and three different A. vitis strains. A. tumefaciens strains induced tumors at variable frequencies, while A. vitis-infected stem segments never formed crown galls. The tumorous nature of tissues grown on hormone free medium was confirmed by opine assays. Bioinformatic and PCR analysis of the virulence regions of various A. tumefaciens and A. vitis Ti plasmids showed that virH2 and virK genes are common in A. tumefaciens but they are lacking from A. vitis. Thus virH2 and virK genes may be essential for grapevine stem segment transformation, but expression of certain T-DNA genes of A. vitis may also prevent the growth of transformed cells. Our data indicate that the tumorigenic ability of A. vitis is different on intact plant and on their explants, and that the specific host association of A. vitis on grapevine is probably determined by physiological and biochemical factors (e. g., better colonizing ability) rather than by its increased tumorigenic ability. Therefore it is not reasonable to develop „helper” plasmids for grapevine transformation from A. vitis pTis, unless their avirulence on in vitro explants is determined by T-DNA gene(s). Due to the inability of A. vitis to induce tumors on grapevine stem segments, the use of in vitro explant assays cannot be reliably used to select A. vitis resistant grapevine genotypes or transgenic lines.
Resumo:
Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twentyone transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.