2 resultados para Agro-infiltration
em Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest
Resumo:
A szerző tanulmányában külföldi és hazai példák alapján a fenntartható gazdaság kialakítására hoz példákat. Bemutat egy osztrák energiarégiót és egy magyar biodízelgyártó vállalkozást. Mindegyik esetre jellemző, hogy olyan társadalmi-gazdasági környezetet kell teremteni, hogy minden stakeholder a win-win megoldásban legyen érdekelt. _____ Agricultural land ownership and the desirable scale of operation have been the subjects of a plethora of studies. Mainstream research, however, has a tendency not to take the human factor into consideration. The unpredictability of economic policies, uncertainties about EU subsidies, the optimal scale of operation and industry- specific characteristics all constitute a far more exciting and reasonable research topic for the majority. According to literature, social support for the efforts and the existence of a clear “guiding vision” have a crucial role in the success of rural development strategies. Concerning the development of a region or village, it is important to determine whether there exists a leading personality, an example-setting entrepreneur or entrepreneurial group that can act as a fundamental driving force or an initiator in reforming the rural way of life; one that could help preserve positive rural values while nurturing economically successful enterprises. Experience has shown that success can only be built upon partnership and mutual cooperation.
Resumo:
In this paper five different models, as five modules of a complex agro-ecosystem are investigated. The water and nutrient flow in soil is simulated by the nutrient-in-soil model while the biomass change according to the seasonal weather aspects, the nutrient content of soil and the biotic interactions amongst the other terms of the food web are simulated by the food web population dynamical model that is constructed for a piece of homogeneous field. The food web model is based on the nutrient-in-soil model and on the activity function evaluator model that expresses the effect of temperature. The numbers of individuals in all phenological phases of the different populations are given by the phenology model. The food web model is extended to an inhomogeneous piece of field by the spatial extension model. Finally, as an additional module, an application of the above models for multivariate state-planes, is given. The modules built into the system are closely connected to each other as they utilize each other’s outputs, nevertheless, they work separately, too. Some case studies are analysed and a summarized outlook is given.